
Faculty of Natural Sciences and Technology I

Department of Computer Science

Bachelorthesis

Android App for Minimization of
Acyclic Phase-Type Distributions

Submitted by:

Michael Heiner Bungert

Reviewers:

Prof. Dr. Holger Hermanns

Dr. Reza Pulungan

Submitted:

December 19, 2013

Acyclic phase-type distributions are probability distributions that mainly consist of

combinations of exponential distributions and can be represented by continuous-time

Markov chains. The computation time when analyzing these distributions strongly de-

pends on the size of their representations. However, because their representations aren’t

unique, an algorithm was developed by Reza Pulungan and Holger Hermanns to min-

imize their state space [5]. They also developed a calculus which is able to construct

these distributions.

In this thesis, an Android application to build and display these distributions according

to this calculus is developed. It uses an already implemented webservice to compute their

minimal representations and makes this service reachable from any Android device.

Contents

1 Introduction 5

2 Basic Knowledge 7

2.1 Mathematical Basics . 7

2.1.1 Continuous-Time Markov Chains 7

2.1.2 Phase-Type Distributions . 8

2.1.3 Canonical Representations . 9

2.1.4 Stochastic Operators . 10

2.2 Cox & Convenience Calculus . 12

2.2.1 Basic Delay . 12

2.2.2 Cox Operator . 12

2.2.3 Sequential Composition . 13

2.2.4 Parallel Composition . 13

2.2.5 Choice Operator . 14

3 Minimization of PH-Distributions 16

3.1 Minimization Algorithm . 16

3.2 APHMIN Tool . 17

3.2.1 Input . 17

3.2.2 Output . 18

4 The Android App 19

4.1 Basic Design Ideas . 19

4.2 User Interface and Semantics . 20

4.2.1 Operator and subclasses . 20

4.2.2 Icon . 23

4.2.3 Aphmin . 23

4.3 Connection to Webservice . 23

3

Contents Contents

5 Dealing with n-ary Operators 26

5.1 Intuitional Approach . 26

5.2 Basic Ideas . 27

5.3 Size of Operands . 28

5.3.1 Maximum Operator . 29

5.3.2 Minimum Operator . 31

5.3.3 Convolution Operator . 33

5.3.4 Results . 35

5.4 Density of Transitions . 35

5.5 Transition Density vs. Size . 35

5.6 Implementation of the Heuristic . 36

6 Evaluation & Conclusion 39

6.1 Evaluation . 39

6.2 Conclusion . 40

4

1 Introduction

Model-based analysis on systems forms one of the basis aspects of research in computer

science. We are able to transform systems into appropriate models that provide the

possibility to explicitly analyse the important internal interactions inside the system

and its interaction with the environment. Markov models are state-based models which

are used often for this purpose because of their property not depending on previous

visited states. A special area of Markov models are acyclic phase-type distributions

(APH). These are Markov chains representing the distribution of the time until an

absorbing state is reached. Different operators are commonly used to connect different

distributions and to build more complex models.

The problem that comes along with these models and especially the operators is the

state-explosion problem. Many of the the operators build cross products of the state

spaces of the operands which leads to a fast growth of the resulting state space. This

leads to long computation times and high memory consumption when running algo-

rithms on these models. Minimized representations and algorithms to compute them

are needed. For acyclic phase-type distributions, Reza Pulungan and Holger Hermanns

developed an algorithm with polynomial complexity [4] to compute minimized represen-

tations and implemented this algorithm in the tool suite APHMIN [5]. The tool uses

the Cox & Convenience Calculus to generate expressions representing acyclic phase-

type distributions. The structure of the calculus provides the ability to connect simple

exponential distributions with different operators.

The omnipresence of mobile devices today and the simple Drag and Drop mechanism

they provide lead to the first aim of this thesis. We want to implement a mobile appli-

cation which uses the APHMIN tool to build expressions and compute their minimized

representation.

The operators that are used in the Cox & Convenience Calculus rely on several math-

ematical operators frequently used for all kinds of distributions. They are normally used

as n-ary operators to connect any number of distributions. At the moment, APHMIN

is only able to use them as binary operators. But the app should also be able to build

expressions with n-ary operators to be consistent with the mathematical concept. This

leads to the second aim of this thesis. We will develop a heuristic to transform n-ary

5

Chapter 1. Introduction

operators into their corresponding binary versions. The transformed expressions should

lead to lower computation times when applying the minimization algorithm.

The thesis is divided into six chapters. The chapters are organized as follows:

• Chapter 2 provides the mathematical basics that are needed throughout the the-

sis. We define acyclic phase-type distributions and the operators that are used to

connect them. We will also present the Cox & Convenience Calculus.

• In chapter 3, the minimization algorithm and the implementation of the APHMIN

tool is presented.

• Chapter 4 is about the implementation of the actual application. We discuss the

basic design ideas for the app and the communication between the device and the

server.

• In chapter 5, the heuristic for transforming n-ary operators into their binary ver-

sions is developed. We also take a closer look at the experimental results about

different criteria that lead to these results.

• In chapter 6, we summarize the main parts of the thesis and evaluate the developed

heuristic on different expressions.

6

2 Basic Knowledge

2.1 Mathematical Basics

First we take a closer look at some basic mathematical definitions. This section reviews

phase-type distributions, continuous-time Markov chains and two canonical forms to

represent them [3][5].

2.1.1 Continuous-Time Markov Chains

Continuous-time Markov chains (CTMC) can be used to approximate any continuous

probability distribution. A CTMC is defined as a triple M = (S,Q, π) with the following

components:

• S = {s1, s2, . . . , sn, sn+1} is a finite set of states.

• Q : (S×S)→ R is an infinitesimal generator matrix which consists of the transition

rates between the states. For any two distinct states s, s′ ∈ S, Q(s, s′) describes

the transition rate between s and s′.

• π : S → [0, 1] describes the initial distribution.

The probability, that a state change from s to s′ occurs within time t is exponen-

tially distributed over t with rate Q(s, s′), so the probability can be computed by

1− exp(−Q(s, s′)t). The following two properties hold by definition:

• Q(s, s′) ≥ 0 for all s 6= s′

• Q(s, s) = −
∑

s 6=s′ Q(s, s′)

The exit rate E(s) = −Q(s, s) is the rate for the exponential distribution that describes

the probability of leaving state s.

7

2.1. Mathematical Basics Chapter 2. Basic Knowledge

0.6

0.1

0.4

0.3

Figure 2.1: Cyclic PH -distribution

0.6

0.1

0.3

Figure 2.2: Acyclic PH -distribution

2.1.2 Phase-Type Distributions

If E(si) = 0 for a state si, this state is called an absorbing state. A state si is called

transient if the probability that a state is not visited again once it is left is larger then 0.

If there is an absorbing state sn+1 in a CTMC M and all other states si are transient,

the distribution of the time to absorption is called a phase-type (PH) distribution. The

generator matrix can be written as follows:

Q =

[
A ~A

~0 0

]

The matrix A is called a PH-generator. The vector ~A consists of the transition rates

of every state si to the absorbing state sn+1 for every 1 ≤ i ≤ n. The initial distribution

π = [~α, αn+1] consists of the vector ~α, representing the probabilities of starting in a

non-absorbing state, and the probability αn+1 of starting in the absorbing state. In the

following, we only consider initial distributions with αn+1 = 0.

Because
∑

s∈S Q(s, s′) = 0 for every s′ ∈ S, a CTMC M with n + 1 states (includ-

ing the absorbing state) can be fully represented by the n × n PH-generator A and

the n-dimensional row vector ~α. The notation PH(~α,A) is used do describe the PH -

distribution.

During this thesis, we will normally deal with acyclic PH -distributions (APH). This

subset of PH -distributions doesn’t contain any cycles in their graph-representations.

The graph in Figure 2.1 shows a cyclic PH -distribution while Figure 2.2 is an acyclic

one.

8

2.1. Mathematical Basics Chapter 2. Basic Knowledge

A minimal representation of an APH -distribution is the representation of the same

distribution with the fewest possible number of states. A minimal representation of an

APH -distribution isn’t necessarily acyclic. We call an APH -distribution acyclic-ideal, if

there is a minimal representation of this distribution that is also acyclic.

2.1.3 Canonical Representations

There are two canonical representations for an APH -distribution. These two representa-

tions are unique according to isomorphism of their graph representations. The canonical

representations are used later for the minimization algorithm.

Ordered Bidiagonal Representation

A PH -generator is called a bidiagonal generator if it has the following form:

−λ1 λ1 0 . . . 0

0 −λ2 λ2 . . . 0

0 0 −λ3 . . . 0

...
...

...
. . .

...

0 0 0 . . . −λn


The generator can be denoted by Bi(λ1, λ2, . . . , λn). In this representation, the exit

rates of the generator (i.e. the negative diagonal values) are in ascending order. A

representation of a PH -distribution using a bidiagonal generator as its PH -generator is

called an ordered bidiagonal representation. Every APH -distribution can be transformed

into an ordered bidiagonal representation according to the following theorem:

Theorem 1. Let (~α,A) be an acyclic phase-type representation, λ1, λ2, . . . , λn be the

eigenvalues of −A, and, without loss of generality, assume that λn ≥ λn−1 ≥ · · · ≥ λ1.

Then there exists a unique bidiagonal representation, the ordered bidiagonal representa-

tion, (~β,Bi(λ1, λ2, . . . , λn) such that:

PH(~β,Bi(λ1, λ2, . . . , λn)) = PH(~α,A)

To transform an APH -distribution into its ordered bidiagonal representation, the spec-

tral polynomial algorithm (SPA)[2] is used. The algorithm’s complexity is O(n3) where

n is the number of states.

9

2.1. Mathematical Basics Chapter 2. Basic Knowledge

Cox Representation

The Cox representation is another canonical representation for PH -distributions. A

Cox generator is a PH -generator that is used to build the Cox representation of a PH -

distribution. Let 0 ≤ pi < 1, for 1 ≤ i ≤ n − 1. A Cox generator has the following

form: 

−λ1 p1λ1 0 . . . 0

0 −λ2 p2λ2 . . . 0

0 0 −λ3 . . . 0

...
...

...
. . .

...

0 0 0 . . . −λn


In this case, the exit rates are in descending order. The notation for the Cox generator

is Cx([λ1, p1], [λ2, p2], . . . , [λn−1, pn−1], λn). The advantage of this representation over

the bidiagonal representation is, that the initial distribution of the Cox representation

is a Dirac distribution to the highest exit rate state. We define another theorem now:

Theorem 2. Let (~β,Bi(λ1, λ2, . . . , λn)) be an ordered bidiagonal representation, and let

vector ~δ = [1, 0, . . . , 0]. Then there exists a unique Cox representation

(~δ, Cx([λn, xn], [λn−1, xn−1], . . . , λ1))

such that:

PH(~δ, Cx([λn, xn], [λn−1, xn−1], . . . , λ1))) = PH(~β,Bi(λ1, λ2, . . . , λn))

The vector ~x determining the Cox representation is derived from vector ~β by:

xi = 1− βi
n∏

j=i+1

1
xj

, for 2 ≤ i ≤ n

Considering these two theorems, we know that every APH -distribution can be trans-

formed into an equivalent distribution in both ordered bidiagonal and Cox representa-

tion.

2.1.4 Stochastic Operators

When working with APH -distributions, three stochastic operators are commonly used.

Let X1 and X2 be two independent random variables. Then

• Xmax = max{X1, X2} is the maximum,

10

2.1. Mathematical Basics Chapter 2. Basic Knowledge

• Xmin = min{X1, X2} the minimum and

• Xcon = con{X1, X2} the convolution

of the two random variables. These operators can be applied to PH -distributions. Let

F (t) and G(t) be two distribution functions. The maximum, minimum and convolution

of F (t) and G(t) are computed by

• max(F (t), G(t)) = F (t)G(t)

• min(F (t), G(t)) = 1− (1− F (t))(1−G(t))

• con(F (t), G(t)) =
∫ t
0 F (t− x)G(x)dx

When applying these operators to APH -distributions, the resulting distributions are

also APH -distributions.

Theorem 3. Let PH(~α,A) and PH(~β,B) be two PH-distributions of size n and m.

Then:

1. their convolution is a PH-distribution PH(~δ,D) of size m+ n, where:

~δ = [~α, αm+1
~β] and D =

[
A A~β

0 B

]

2. their minimum is a PH-distribution PH(~δ,D) of size mn, where1:

~δ = ~α⊗ ~β and D = A⊕B

3. their maximum is a PH-distribution PH(~δ,D) of size mn+m+ n, where:

δ = [~α⊗ ~β, βn+1~α, αn+1
~β] and D =


A⊕B IA ⊗B A⊗ IB

0 A 0

0 0 B


All three operators are associative and commutative. Although the PH -generator and

the initial distribution may vary when applying associativity and commutativity, the

corresponding distribution functions stay the same.

1⊕ and ⊗ denote the Kronecker sum and product operators, respectively.

11

2.2. Cox & Convenience Calculus Chapter 2. Basic Knowledge

2.2 Cox & Convenience Calculus

The Cox representation is one way to represent APH -distributions with simple graph

representations. It is possible to depict every APH -distribution in Cox representation by

a calculus. This section introduces a calculus developed by Reza Pulungan and Holger

Hermanns [5]. The Cox & Convenience Calculus (CCC) is able to represent every APH -

distribution in its Cox representation and connect APH -distributions with the stochastic

operators introduced in the last section.

Each term built by the following grammar is a CCC delay:

P :== λ | µ / λ.P | P ; P | P ⊕ P | P || P

where λ ∈ R+ and µ ∈ R≥0 are rates. The calculus consists of two parts, the Cox and

the Convenience Part. The Cox part is used to build simple distributions in Cox repre-

sentation. The Convenience part provides the possibility to manipulate the distributions

using three operators.

2.2.1 Basic Delay

The basic block for every CCC term is a simple exponentially distributed delay, expressed

by λ ∈ R+. The semantic behind this is an activity that induces a delay distributed

according to an exponential distribution with rate λ and then terminates. The rule of

inference for this basic case is defined as follows:

λ
λ−→ stop

In CCC , stop is the terminal symbol describing that the absorbing state is reached.

2.2.2 Cox Operator

The Cox operator (/) is the only operator that is needed to build expressions representing

every APH -distribution in its Cox representation. The operator takes the form µ / λ.P ,

where µ presents the preemptive termination delay unless delay λ occurs first. Intuitively,

there is a transition µ leading immediately to the absorbing state and another one λ going

out to the graph built by P . The rules of inference for the Cox operator are defined as

follows:

µ / λ.P
λ−→ stop µ / λ.P

λ−→ P

12

2.2. Cox & Convenience Calculus Chapter 2. Basic Knowledge

2.2.3 Sequential Composition

Although basic delays and the Cox operator suffice to build every APH -distribution,

the Convenience part of CCC provides further operators to connect and manipulate

different delays. The sequential composition operator (;) provides the opportunity to

string together several distributions. Intuitively, this means that if the first operand

reaches its absorbing state, the second operand starts and has to be completed. This

leads to the following rules of inference:

P
λ−→ P ′ P ′ 6= stop

P ; Q
λ−→ P ′ ; Q

P
λ−→ stop

P ; Q
λ−→ Q

Example. The CCC expression 1
11 ; 1

16 ; 1
25 evaluates to the following CTMC :

1
11 ;

1
16 ;

1
25

1
16 ;

1
25

1
25

1
11

1
16

1
25

2.2.4 Parallel Composition

The parallel composition operator (||) provides another opportunity to join two CCC

expressions. Using this operator, CCC is able to connect two distributions and let them

proceed concurrently. It acts similar to the parallel operator in CCS developed by Robin

Millner. Considering this behaviour, CCC provides the following rules of inference:

P
λ−→ P ′

P || Q λ−→ P ′ || Q

Q
λ−→ Q′

P || Q λ−→ P || Q′

The parallel composition operator is a static operator, which would lead to several

absorbing states. Because we defined APH -distributions with exactly one absorbing

state, we need the following assumption:

stop || stop ≡ stop

Example. The CCC expression 1 || 3 ; 4 evaluates to the following CTMC :

13

2.2. Cox & Convenience Calculus Chapter 2. Basic Knowledge

1 || 3; 4

stop || 3; 4 1 || 4

stop || 4 1 || stop

1
3

3
1

4

4
1

2.2.5 Choice Operator

The choice operator (⊕) is a little different to the one in CCS. The choice which com-

ponent to use doesn’t need to be made at the beginning. Every component can take

its own transitions until one of them terminates. This leads to the following rules of

inference:

P
λ−→ P ′ P ′ 6= stop

P ⊕ Q
λ−→ P ′ ⊕ Q

Q
λ−→ Q′ Q′ 6= stop

P ⊕ Q
λ−→ P ⊕ Q′

P
λ−→ stop

P ⊕ Q
λ−→ stop

Q
λ−→ stop

P ⊕ Q
λ−→ stop

Example. The CCC expression 3 ; 4⊕ 1 ; 2 evaluates to the following CTMC :

14

2.2. Cox & Convenience Calculus Chapter 2. Basic Knowledge

3; 4 ⊕ 1; 2 4 ⊕ 1; 2

3; 4 ⊕ 2 4 ⊕ 2

3

1
1

4

3

2

4

2

The operators of the Convenience part represent the stochastic operators we defined

in the previous section. The following theorem holds:

Theorem 4. For all delays P,Q ∈ CCC:

1. con(PH(P), PH(Q)) = PH(P ;Q),

2. min(PH(P), PH(Q)) = PH(P ⊕Q) and

3. max(PH(P), PH(Q)) = PH(P ||Q).

We can conclude that for every P ∈ CCC, MP = (S,Q, π) is a CTMC underlying an

acyclic phase-type representation with Dirac initial distribution.

15

3 Minimization of PH-Distributions

With the stochastic operators presented in the previous chapter, we are able to build

large APH -distributions. The size of these APH -distributions have a large influence

on the computation time when analyzing them and working with them. This chapter

presents a minimization algorithm developed by Reza Pulungan and Holger Hermanns

[4].

3.1 Minimization Algorithm

The representation of a PH -distribution that is mainly used by the minimization algo-

rithm is the Laplace-Stieltjes transform (LST).

Definition 1 (Laplace-Stieltjes transform). A PH-distribution can be characterized by

its Laplace-Stieltjes transform:

f̃(s) = ~α(sI −A)−1 ~A+ αn+1, s ∈ R+
0

where I is the n-dimensional identity matrix.

The LST of an exponential distribution with rate λ is given by f̃ = λ
s+λ . Let L(λ) =

s+λ
λ . We call L(λ) the L-term of λ. The LST of a PH distribution Bi(~β, (λ1, λ2, . . . , λn))

is given by:

f̃(s) = β1
L(λ1)...L(λn)

+ β2
L(λ2)...L(λn)

+ · · ·+ βn
L(λn)

= β1+β2L(λ1)+···+βnL(λ1)...L(λn)
L(λ1)L(λ2)...L(λn)

We already know, that every APH distribution can be transformed into its bidiagonal

representation using SPA in O(n3). So we can bring every APH distribution into this

LST form. The aim of the algorithm is to remove states of the distribution, i.e. to find

common L-terms in both the numerator and determinator polynomials.

Theorem 5. If for some 1 ≤ i ≤ n, β1 + β2L(λ1) + · · ·+ βiL(λi−1) is divisible by L(λi)

and the resulting vector ~δ is substochastic (i.e. δi ≥ 0 for all 1 ≤ i ≤ n and ~δ~1 ≤ 1),

then the following equation holds:

PH(~β,Bi(λ1, . . . , λn)) = PH(~δ,Bi(λ1, . . . , λi−1, λi+1, . . . , λn))

16

3.2. APHMIN Tool Chapter 3. Minimization of PH -Distributions

The complete minimization algorithm for a given APH distribution (~α,A) works as

follows:

1. Use SPA to turn (~α,A) into its bidiagonal representation (~β,Bi(λ1, λ2, . . . , λn))

which takes O(n3) time.

2. Set i to 2.

3. While i ≤ n

a) Check divisibility w.r.t. λi which takes O(n).

b) • If not divisible: set i to i+ 1 and continue while-loop.

• If divisible: If possible, eliminate λi as described in [4] and decrease n by

1.

If elimination isn’t possible, don’t decrease n and continue with

(~β,Bi(λ1, λ2, . . . , λn)) and with i increased by 1.

4. Return (~β,Bi(λ1, . . . , λn))

This algorithm ensures minimality only for acyclic-ideal distributions. The Cox part of

CCC ensures that only acyclic-ideal distributions can be built. The other operators don’t

ensure that always. However, the following theorem holds for the stochastic operators:

Theorem 6. [4][Lemma14] Convolution, maximum and minimum operations are acyclic-

ideal preserving almost every time.

This theorem ensures, that the algorithm works for distributions built with CCC

almost every time.

3.2 APHMIN Tool

APHMIN is a collection of tools developed by Reza Pulungan [5]. It implements the

minimization algorithm presented in the previous section. The webinterface for using

the tool suite can be found at http://depend.cs.uni-sb.de/tools/aphmin/.

3.2.1 Input

As input, APHMIN accepts every expression built with a special grammar. The gram-

mar is quite similar to CCC , with small differences:

P ::= exp(λ) | erl(n, λ) | cox(µ, λ, P) | con(P, P) | min(P, P) | max(P, P)

17

http://depend.cs.uni-sb.de/tools/aphmin/

3.2. APHMIN Tool Chapter 3. Minimization of PH -Distributions

1 2 . . . n
λ λ λ λ

Figure 3.1: Graph of the Erlang distribution Erl(n, λ)

The grammar is more or less a prefix-notation of CCC . The max , min, con and Cox

operator correspond to the CCC operators (||), (⊕), (;) and (/). To build large graphs

more user friendly, the grammar offers the possibility to use Erlang distributions. Er-

lang distributions represent exponential distributions with the same rate, sequentially

stringed together.

Definition 2 (Erlang distributions). An Erlang Distribution Erl(n, λ) with rate λ and

shape n can be represented by an acyclic PH-distribution Bi(λ, λ, . . . , λ︸ ︷︷ ︸
n

). The graph of

the Erlang distribution Erl(n, λ) is depicted in Figure 3.1.

An important fact is that the operators are defined as binary operators, similar to the

mathematical definition in the previous chapter. This works well for the webinterface,

but leads to an uncomfortable work flow using the app later.

3.2.2 Output

The APHMIN tool suite is wrapped into a simple webservice. Minimization requests can

be sent using the SOAP 1.1 protocol via HTTP. It offers a single operation aphmin, which

receives an input expression and delivers the minimized representation. The tool either

responds immediately or can send the minimized result via email. The tool also offers

the user information about the computation time, the number of states in the original

graph and also the number of states in the minimal representation. When receiving

a response via email, APHMIN also adds a “.tra” (a simple list of all transitions) or

“.cox” (the expression in cox representation) file of the minimized representation. The

WSDL-file describing the web-service can be found at: http://ada.cs.uni-saarland.

de/aphminserver.php?wsdl.

18

http://ada.cs.uni-saarland.de/aphminserver.php?wsdl
http://ada.cs.uni-saarland.de/aphminserver.php?wsdl

4 The Android App

Having set the basics, we now take a closer look at the actual aim of the thesis. Inspired

by Drag & Drop applications on mobile devices, we developed an app for Android OS

to use the APHMIN tool from every Android device. The design is based on the folder

system design of the Android OS using a simple Drag & Drop mechanism. The app uses

nested boxes to create and display CCC expressions.

4.1 Basic Design Ideas

The Android OS provides the opportunity to organize its apps in folders. The design

idea for this feature is quite simple. A simple click on the folder symbol opens a small

frame which displays the apps contained by the folder. This design structure needs

to be modified for our purpose. The app should display every delay and operator by a

different box. Because CCC is able to build expressions of any depth, the app also needs

to build nested boxes in contrast to the folders in Android, which can only contain apps,

not any other folders. A toolbar containing the different operators and basic delays is

the basis of the Drag & Drop mechanism. The expressions should be built by simply

dragging an operator or delay and dropping it into an already existing box representing

another operator. The actual minimization algorithm is executed by APHMIN on the

server, because it may need more resources than a mobile device could deliver. So the

app needs to send the expression to the tool via Internet connection. To avoid errors,

the app should also ensure that only valid expressions should be sent to APHMIN . The

graphical design of the app is shown in Figure 4.1.

We have already seen, that CCC defines sequential composition, parallel composition

and the choice operator as binary operators because these operators correspond to the

stochastic operators min, max and con. We have also seen that the grammar APHMIN

uses is defined in the same way. Because the operators are associative and commutative,

they are commonly used as n-ary operators in mathematics. Because of that, the app

should also be able to build expressions with n-ary operators.

We now give a short overview over the implementation of the app. We describe the

data structure, the graphical design and the underlying classes with their functions. We

19

4.2. User Interface and Semantics Chapter 4. The Android App

Figure 4.1: APHMIN App

will only describe the most important ones.

4.2 User Interface and Semantics

The user interface is implemented by several classes that already contain the underlying

semantics. This works because the tree structure that Android uses to build its user

interfaces can be easily used for this purpose.

4.2.1 Operator and subclasses

The boxes that represent the different operators are objects of the class Operator, a

subclass of the Android API class LinearLayout. We have to take a closer look at every

possible operator and basic delay to understand the class structure.

• max , min and con operator: These operators should be designed as n-ary

operators. So the design needs an area where the user can drop basic delays or

other operators. These subexpressions need to be saved in a List field because the

number of children isn’t predefined.

• Cox operator: The Cox operator also needs an area to drop a subexpression.

But it can only contain one subexpression, so it simply needs an Operator field to

save this single subexpression.

• Exponential and Erlang distributions These basic blocks don’t need an area

to drop delays or operators. They can’t contain any subexpressions and simply

20

4.2. User Interface and Semantics Chapter 4. The Android App

Operator

text : TextView

areaWidth : int

areaHeight : int

checkExpression() : boolean

addingPossible() : boolean

size() : long

compareTo(Operator another) : int

ExpView

rate : float

toString() : String

ErlView

shape : int

rate : float

toString() : String

OperatorWithArea

dropArea : LinearLayout scroll : HorizontalScrollView

addView(View child) : void

removeView(View child) : void

addArea(HorizontalScrollView scroll2) : void

CoxView

preemptive : float

regular : float

child : Operator

toString() : String

ConView

children : LinkedList<Operator>

toString() : String

MinView

children : LinkedList<Operator>

toString() : String

MaxView

children : LinkedList<Operator>

toString() : String

Figure 4.2: UML diagram of the operator types

need one or rather two fields that contain the transition rates.

These operators are implemented as shown in Figure 4.2. At first, we take a closer

look at a part of the abstract class Operator.

1 public abstract class Operator extends LinearLayout implements

2 Comparable<Operator> {
3

4 public TextView text ;

5 public Boxes parent ;

6 protected int areaWidth ;

7 protected int areaHeight ;

8

9 public abstract boolean checkExpress ion () ;

10 public abstract boolean add ingPoss ib l e () ;

11 public abstract long s i z e () ;

21

4.2. User Interface and Semantics Chapter 4. The Android App

12

13 public int compareTo (Operator another) {
14 return (int) (another . s i z e () − s i z e ()) ;

15 }
16

17 // . . .

18

19 }

In this abstract class, all fields that are needed by every kind of operator are imple-

mented. The TextView text will simply indicate in the user interface, what operation

or delay is represented. It is not necessary to implement a field child, because the basic

and Erlang delays don’t have any children and form the leaves of the tree.

Operator also implies two abstract methods. The method checkExpression() checks, if

a box already builds a correct and complete CCC expression. This method is used to vi-

sualize if we can already send the expression to the server. The method addingPossible()

checks, if there still can be added any operators or delays to the referred box.

The abstract class OperatorWithArea extends the class Operator. Additional fields

and methods are added in this subclass.

1 public abstract class OperatorWithArea extends Operator {
2

3 public LinearLayout dropArea ;

4 public Hor i zonta lSc ro l lV i ew s c r o l l ;

5

6 @Override

7 public abstract void addView (View c h i l d) ;

8

9 // . . .

10

11 }

The objects dropArea and scroll represent the area, where the user can drop new

operators or delays. We need both of them because Android requires to put the scroll

view into a LinearLayout. The method addView() is used to add new operators to the

area. It is abstract because it is implemented a little different for each operator. The

Cox operator displays its child in the center, because no other children can be added.

The different explicit classes implement the abstract methods and contain additional

fields that are required for the different kind of delays and operators. The classes for

22

4.3. Connection to Webservice Chapter 4. The Android App

the graphical interface also imply the underlying semantics for the expressions. Because

the structure of CCC is not that complex, this doesn’t lead to any problems. The

toString() of the subclasses of Operator are implemented recursively and return a String

representation of the expression according to the grammar used by APHMIN .

4.2.2 Icon

In the next step, we focus on the navigation through the expression tree. Because of that,

a class Icon is implemented which is a subclass of LinearLayout. These graphical objects

are used inside the regular Operator objects to lead to the corresponding subexpression

and to display them. There aren’t any subclasses of Icon because we simply change the

background and the text for the different kinds of operators and delays. The class simply

consists of two fields, referring to the corresponding Operator object and the TextView

displaying the type of the operator.

4.2.3 Aphmin

The class Aphmin implements the main Activity of the app. The interface is designed as

shown in Figure 4.1. The class provides several methods to interact with the interface.

The most important ones are:

• refreshBreadCrumbs(): This method refreshes the breadcrumbs that are used

to navigate through the expression tree.

• reset(), oneLevelUp() and calculateResult(): The methods that are used by

the buttons at the bottom of the Activity.

• editExpression() and removeExpression(): The methods that are used by

some PopUp menus which allow the user to edit and remove subexpressions.

4.3 Connection to Webservice

The APHMIN tool provides a webservice to make it usable for other tools. The data

exchange between the server and the app uses the SOAP protocol. The Android SDK

doesn’t offer a possibility to use SOAP connections. So we need to use a third party

library called ksoap2-android 1. The connection to the webservice is implemented in the

class AphminRequestTask. The class extends the class AsyncTask, so the request is sent

1The library is available under https://code.google.com/p/ksoap2-android/

23

https://code.google.com/p/ksoap2-android/

4.3. Connection to Webservice Chapter 4. The Android App

in the background of the application. The body of the SOAP object built by the app

looks as follows:

1 <v:Body>

2 <n0:aphmin id=”o0” c : r o o t=”1” xmlns:n0=”urn:APHMIN”>

3 <exp r e s s i on i : t y p e=” d : s t r i n g ”>exp (5 . 0)</ exp r e s s i on>

4 <exp r e s s i on i : t y p e=” d : s t r i n g ”>aphmin@aphmin . net</

exp r e s s i on>

5 </n0:aphmin>

6 </v:Body>

The webservice only offers the operation aphmin. In the example shown above, an email

address was added to the request. It is also possible to send a request without an email

address. In this case, the response of the webservice looks like this:

1 <SOAP−ENV:Body>

2 <ns1:aphminResponse>

3 <re turn x s i : t y p e=”ns2:Map”>

4 <item>

5 <key x s i : t y p e=” x s d : s t r i n g ”>computationtime</key>

6 <value x s i : t y p e=” x s d : f l o a t ”>0.010884046554565</ value>

7 </ item>

8 <item>

9 <key x s i : t y p e=” x s d : s t r i n g ”>o r i g i n a l s i z e</key>

10 <value x s i : t y p e=” x s d : i n t ”>2</ value>

11 </ item>

12 <item>

13 <key x s i : t y p e=” x s d : s t r i n g ”>minimizeds i ze</key>

14 <value x s i : t y p e=” x s d : i n t ”>2</ value>

15 </ item>

16 <item>

17 <key x s i : t y p e=” x s d : s t r i n g ”>model</key>

18 <value x s i : t y p e=” x s d : s t r i n g ”>exp (5)</ value>

19 </ item>

20 </ return>

21 </ ns1:aphminResponse>

22 </SOAP−ENV:Body>

24

4.3. Connection to Webservice Chapter 4. The Android App

The response message returned by the webservice contains the same pieces of infor-

mation that are displayed by the webinterface. Whenever the request contains an email

address, the values are simply set to zero or contain no value. AphminRequestTask also

implements the method writeResultFile. For every request, the app also creates a new

file on the device which contains the original and the minimized expression.

25

5 Dealing with n-ary Operators

The max , min and con operators are displayed in the app as n-ary operators. In the

already existing APHMIN tool, these operators are implemented as binary operators, so

the tool cannot handle expressions built with n-ary operators. The aim of this chapter is

to find a method to break expressions with n-ary operators down to expressions consisting

only of binary operators.

5.1 Intuitional Approach

When we recap the definitions of the max , min and con operator, these operators are

associative and commutative. In the following, we will use S ∈ {max,min, con} to

represent this operators. We also use Sb as the binary version of an operator S, so

Sb ∈ {maxb,minb, conb}. The associativity and commutativity of the operators lead to

a first intuitional approach.

Approach 1. In a CCC expression M , every n-ary operator S which is associative and

commutative is replaced in the following way:

S(x1, x2, x3, . . . , xn) = (. . . (x1 Sb x2) Sb x3) . . . Sb xn

with xi ∈ CCC with 1 ≤ i ≤ n.

This approach intuitively means that we interpret S as a left-associative version of

n − 1 binary operators Sb. Because S is associative, this doesn’t lead to any problems.

Another possibility is to interpret S as a right-associative version of n−1 binary operators

Sb.

Approach 2. In a CCC expression M , every n-ary operator S which is associative and

commutative is replaced in the following way:

S(x1, x2, x3 . . . xn) = x1 Sb (x2 Sb (x3 Sb . . . (xn−1 Sb xn))) . . .)

with xi ∈ CCC with 1 ≤ i ≤ n.

26

5.2. Basic Ideas Chapter 5. Dealing with n-ary Operators

At first sight, these two approaches look quite similar. We compare the two approaches

on an example.

Example. We analyze the expression max(erl(20, 4), erl(20, 5), erl(10, 3)). The graph

represented by the expression consists of 4851 states. The two approaches replace the

max -operator by its binary version. They lead to the following two expressions:

1. max(max(erl(20,4), erl(20,5)) , erl(10,3))

2. max(erl(20,4), max (erl(20,5), erl(10,3)))

These two expressions represent the same distribution and can be minimized by the

APHMIN tool. We compare the computation time that APHMIN needs to minimize

the two expressions:

0 2 4 6 8 10 12 14 16

right associative

left associative

15.4

4.5

Computation time in hours

The result APHMIN delivers for both expressions are equal. The minimal representa-

tion of the CTMC consists of 196 states. The example also shows that the computation

times differ a lot. In this particular example, the second approach needs more then 3

times as much computation time as the first approach. We see that the way the paren-

thesis are set in the subexpressions has a strong influence on the runtime. The next

step is to find a good heuristic to transform n-ary into binary operators to reduce the

computation time of the minimization algorithm.

5.2 Basic Ideas

To get a basic idea for a heuristic, it is important to understand how APHMIN exactly

works. The parser needs to convert the expressions built by the user into “.tra” files

27

5.3. Size of Operands Chapter 5. Dealing with n-ary Operators

which describe the graphs that represent the expressions. The parser works recursively,

so that the subexpressions are converted step by step. For every operator, APHMIN

doesn’t only convert the expression to the “.tra” format, it immediately minimizes the

graph. This paradigm is called divide and conquer. A quite similar idea is used in [1].

APHMIN is able to reduce the computation time a lot using this paradigm. In the

following, we use Red(·) to name the minimization algorithm of APHMIN .

Let Sb ∈ {maxb,minb, conb}. We assume that we want to compute

Red(Sb(x1, Sb(x2, Sb(. . . Sb(xn−1, xn) . . .)

Whenever APHMIN parses a subexpression into a “.tra” file, it immediately minimizes

it. APHMIN computes the minimization of the above expression as follows:

Red(Sb(Red(x1), Red(Sb(. . . Red(Sb(Red(xn−1), Red(xn))) . . .)

This paradigm leads to the differences in the computation time of the first two ap-

proaches. Because the runtime of the algorithm depends on the number of states, the

heuristic should reduce the state size as early as possible. The two most important cri-

teria to improve the runtime seem to be the size of the subexpressions and the density

of certain transitions.

The heuristic should break down an n-ary operator S to n− 1 pairs according to the

following procedure:

1. The first pair consists of two operands

2. The i-th pair (with 1 < i ≤ n) either consists of a previously built group and one

operand not already assigned to another group, two previously built groups or two

operands not already assigned to another group.

We now consider different aspects and criteria for choosing the order of the operands

when building the pairs.

5.3 Size of Operands

An important criterion for the runtime seems to be the size of the operands i.e. the

number of states. We’re going to analyze differences in computation time for every n-ary

operator provided by CCC . In the experiments that follow, we apply the minimization

algorithm multiple times and display the average computation time. The section only

shows a small extract of the most significant results. Expressions with different sizes

and structures were analyzed and all lead to similar results.

28

5.3. Size of Operands Chapter 5. Dealing with n-ary Operators

5.3.1 Maximum Operator

At first, we take a look at the maximum operator. To simplify the experiments, we

use expressions of the form max(erl(k1, λ1), erl(k2, λ2), . . . , erl(kn, λn)). At first, we

don’t change the order of the operands and use only Erlang distributions with the same

transition rates. This avoids that different transition rates affect the computation times.

Running the APHMIN tool with different expressions and groupings lead to the following

results:

Expression 1

The first expression is max(erl(5, 1), erl(20, 1), erl(50, 1)). In this case, we got three

operands. This leads to the following two ways to parenthesise the sub expressions:

• max(max(erl(5,1),erl(20,1)) , erl(50,1)) displayed by

• max(erl(5,1), max(erl(20,1),erl(50,1))) displayed by

0 100 200 300 400 500 600 700

70

672

Computation time in sec

Figure 5.1: Expression 1

We can see in Figure 5.1 that the computation time diversifies a lot. Parenthesising

the large distributions first leads to a much faster computation time. In this expression,

the Erlang distributions are in descending order regarding to their size.

Expression 2

The next expression consists of four operands in ascending order. The expression

max(erl(2, 0.2), erl(7, 0.2), erl(10, 0.2), erl(65, 0.2)) offers more possibilities to build groups.

We compare the computation times for the following expressions:

• max(max(max(erl(2,0.2),erl(7,0.2)) ,erl(10,0.2)) ,erl(65,0.2)) displayed by

29

5.3. Size of Operands Chapter 5. Dealing with n-ary Operators

• max(max(erl(2,0.2), max(erl(7,0.2),erl(10,0.2))) ,erl(65,0.2)) displayed by

• max(erl(2,0.2), max(max(erl(7,0.2),erl(10,0.2)) ,erl(65,0.2))) displayed by

• max(erl(2,0.2), max(erl(7,0.2), max(erl(10,0.2),erl(65,0.2)))) displayed by

• max(max(erl(2,0.2),erl(7,0.2)) , max(erl(10,0.2),erl(65,0.2))) displayed by

0 500 1,000 1,500 2,000 2,500 3,000 3,500

1,805

471

1,027

2,743

2,739

Computation time in seconds

Figure 5.2: Expression 2

The results in Figure 5.2 underline the results of the previous example. In these expres-

sions, the operands are ordered according to their size. We can see that the computation

times vary a lot. We get the lowest computation times whenever we put the largest

operands together first.

The experiments were repeated with different rate and shape parameters. We always

achieve the best computation times when the largest operands are paired first. The

differences in computation time grow together with the gaps of size between the different

operands. The results didn’t change for other distributions than Erlang distributions.

Another important aspect to look at is the order of the operands. We analyzed different

orders of the subgroups to determine if they have an influence on the computation time.

30

5.3. Size of Operands Chapter 5. Dealing with n-ary Operators

The results showed that the order doesn’t influence the computation time.

5.3.2 Minimum Operator

The next operator to analyze is the minimal operator. We analyze this operator with

the same procedure as the max operator. Again, we use expressions of the form

min(erl(k1, λ1), erl(k2, λ2), . . . , erl(kn, λn)).

Expression 3

We analyze a min operator with 4 operands first. The expression

min(erl(10, 5), erl(20, 5), erl(50, 5), erl(200, 5))

can be parenthesised in 4 different ways.

• min(min(min(erl(10,5),erl(20,5)) ,erl(50,5)) ,erl(200,5)) displayed by

• min(min(erl(10,5), min(erl(20,5),erl(50,5))) ,erl(200,5)) displayed by

• min(erl(10,5), min(min(erl(20,5),erl(50,5)) ,erl(200,5))) displayed by

• min(erl(10,5), min(erl(20,5), min(erl(50,5),erl(200,5)))) displayed by

• min(min(erl(10,5),erl(20,5)) , min(erl(50,5),erl(200,5))) displayed by

31

5.3. Size of Operands Chapter 5. Dealing with n-ary Operators

0 50 100 150 200 250 300 350 400 450

231

193

293

359

361

Computation time in seconds

Figure 5.3: Expression 3

The differences in the computation time in Figure 5.3 aren’t as large as the one of

the max operator. But the best computation times are still received when the largest

expressions are parenthesised first. We analyze again the order of the operands of the

min operator.

Expression 4

We now analyze the same expression as before, but with inverse order of the operands.

• min(min(min(erl(200,5),erl(50,5)) ,erl(20,5)) ,erl(10,5)) displayed by

• min(min(erl(200,5), min(erl(50,5),erl(20,5))) ,erl(10,5)) displayed by

• min(erl(200,5), min(min(erl(50,5),erl(20,5)) ,erl(10,5))) displayed by

• min(erl(200,5), min(erl(50,5), min(erl(20,5),erl(10,5)))) displayed by

• min(min(erl(200,5),erl(50,5)) , min(erl(20,5),erl(10,5))) displayed by

32

5.3. Size of Operands Chapter 5. Dealing with n-ary Operators

0 50 100 150 200 250 300 350 400 450

229

358

357

290

193

Computation time in seconds

Figure 5.4: Expression 4

The expressions show again that also for the min operator, the influence of the order

of the different groups is negligible. The best strategy for the min operator seems to be

equal to the one for the max operator.

5.3.3 Convolution Operator

The operands for the convolution operator have to be larger to get significant results. If

we used expressions of the form

Con(Erl(k1, λ1), Erl(k2, λ2), . . . , Erl(kn, λn)),

the input expression would already be in bidiagonal representation. So we use other

large operands to get significant results.

Convolution Expression 5

We use the following expressions to analyze the computation time:

• Op1: Max(erl(10, 5), Erl(5, 5))

• Op2: Min(Erl(10, 5), Erl(20, 5))

• Op3: Max(Erl(10, 5), Erl(30, 5))

33

5.3. Size of Operands Chapter 5. Dealing with n-ary Operators

• Op4: Max(Erl(30, 5), Erl(80, 5))

This computation times for the expression Con(Op1, Op2, Op3, Op4) look as follows:

• con(con(con(Op1, Op2) , Op3) , Op4) displayed by

• con(con(Op1, con(Op2, Op3)) , Op4) displayed by

• con(Op1, con(con(Op2, Op3) , Op4)) displayed by

• con(Op1, con(Op2, con(Op3, Op4))) displayed by

• con(con(Op1, Op2) , con(Op3, Op4)) displayed by

0 20 40 60 80 100 120 140 160 180

149

150

151

149

151

Computation time in seconds

Figure 5.5: Expression 5

The results in Figure 5.5 clearly show that the way the different operands are put to-

gether don’t influence the computation time. Other experiments with different operands

underline this observation.

34

5.4. Density of Transitions Chapter 5. Dealing with n-ary Operators

5.3.4 Results

The results show that for the max and min operator, the best computation time is

achieved if the largest operands are put together first. For the con operator, the order

of the operands doesn’t influence the computation time. The reason for these differences

is that applying the different operators lead to different sizes of the distributions. While

the size of max and min is computed by multiplication (mn+m+n and mn), the size of

con is calculated simply by addition of the operand sizes (m+n). When minimizing the

largest operands first, we keep the size small in early stages. This leads to good results

in computation time.

5.4 Density of Transitions

Another interesting criterion to look at is the density of certain transitions inside the

operators. We know that the size of the results the minimization algorithm delivers

depends on the number of equal transitions the operands contain. We analyzed that

parenthesizing groups with a lot of similar transitions lead to better results in compu-

tation time.

The results were similar to the ones considering the size of the operands. The best

computation times for the max and min operators were achieved when parenthesizing

groups with a large number of equal transitions first. For the con operator, there weren’t

any differences.

5.5 Transition Density vs. Size

We now have two criteria to parenthesize operands in n-ary operators. The next task is

to prioritize these criteria.

The expressions used in the experiments were expressions of the form

S(Erl(k1, λ), Erl(k2, λ), Erl(k3, λ), . . . , Erl(kn−1, λ), Erl(n, λ′))

where S ∈ {max,min} and k1 < k2 < · · · < kn−1 < kn. We can see that the largest

Erlang distribution is the only one with a different transition rate. The results for this

kind of expressions all looked quite similar. We take a look at a specific example:

max(erl(2, 5), erl(5, 5), erl(10, 5), erl(12, 5), erl(25, 12))

We compared two cases of parenthesizing:

• Ordered by the size of the operands

35

5.6. Implementation of the Heuristic Chapter 5. Dealing with n-ary Operators

• Ordered by its transition rates

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

6,057

865

Computation time in seconds

Figure 5.6: Comparison of size and density

We used several expressions to compare both criteria. Different transition rates were

selected, and also distributed in several ways over the operands. The experiments showed

that the size of the operands seems to be the better criterion. The influence of the size of

the operands seems to be more important then the influence of the density of transitions.

The app implements the two criteria, prioritized as described.

5.6 Implementation of the Heuristic

The results of the previous section lead to the following approach:

Approach 3. For every operator S ∈ {max,min}, the operands are ordered as follows:

1. The operands are ordered according to the density of the transitions

2. The number of states for every operand is computed recursively.

3. The operands are reordered in descending order according to their size. Operands

of the same size stay in the same order as they were before.

4. The first group is built by the first two operands.

5. The i-th group is built by the (i− 1)-th group and the i-th operand.

The operator con gets simply broken down to the binary operator conb with con as a

left-associative version of conb.

This algorithm leads to good results in computation time. The algorithm is imple-

mented in the toString() method of the different Operator implementations and in the

class Heuristic. As an example, we take a look at the implementation of the max oper-

ator.

36

5.6. Implementation of the Heuristic Chapter 5. Dealing with n-ary Operators

1 public St r ing toS t r i ng () {
2 H e u r i s t i c . s o r t (c h i l d r e n) ;

3 S t r i ngBu i l d e r sb = new St r i ngBu i l d e r () ;

4 for (int i = 1 ; i < c h i l d r e n . s i z e () ; i++) {
5 sb . append (”max(”) ;

6 }
7 St r ing p r e f i x = ”” ;

8 St r ing appendix = ”” ;

9 for (Box o : c h i l d r e n) {
10 sb . append (p r e f i x) ;

11 p r e f i x = ” , ” ;

12 sb . append (o . t oS t r i ng ()) ;

13 sb . append (appendix) ;

14 appendix = ”) ” ;

15 }
16 return sb . t oS t r i ng () ;

17

18 }
19

20 public long s i z e () {
21 long s = 0 ;

22 for (Box b : c h i l d r e n) {
23 s = s ∗ b . s i z e () + s + b . s i z e () ;

24 }
25 return s ;

26 }

The method size() computes the size of the subexpression recursively. Because Opera-

tor implements Comparable, the method Collections.sort() (called in the sort() method

of Heuristic) sorts the operands according to their size.

The class Heuristic also implements the sorting of the operands according to their

transition density. The implementation works as follows:

1. An n × n matrix M is created, where n is the number of operands. For two

operands O and O′, M(O,O′) describes the number of common transitions of O

and O′.

2. The biggest entry of the matrix is searched. The corresponding operands are the

37

5.6. Implementation of the Heuristic Chapter 5. Dealing with n-ary Operators

first ones in the order.

3. Line and column of the first operand are deleted from the matrix.

4. While the size of the matrix is bigger then 1

a) Take the last added operand and search its matrix line for the biggest remain-

ing entry.

b) The line of the operand is deleted.

c) The corresponding operand to the biggest entry is the next in the order.

5. Return the ordered list.

The complexity of the algorithm is O(n2) where n is the number of operands. We

know that the complexity of the minimization algorithm is O(n3) where n is the number

of states. For every operator, the number of states is at least as large as the number

of operands, normally a lot larger. Therefore, the runtime of the heuristic is negligible

compared to the runtime of the minimization algorithm, which depends on the number

of states.

38

6 Evaluation & Conclusion

In this last chapter, we apply the developed heuristic to several expressions of different

sizes and compare the computation times to the ones of the intuitional approach defined

in Section 5.1. In the end, the chapter summarizes the observations made in this thesis

and adds some remarks.

6.1 Evaluation

We want to compare now the computation times of the heuristic and the intuitional

approach 1 from Section 5.1. To achieve large differences in computation time, we build

the expressions in a way that the resulting transformations of the heuristic and the

naive approach differ a lot. We first concentrate on the max operator to get the most

significant results. Our expressions all have the following form max(Op1, Op2, Op3, Op4)

where only the different operands change. This leads to the results in Table 6.1.

Op1 Op2 Op3 Op4 State Space
Computation time in sec

Heuristic Approach 1

erl(1, 1) erl(2, 2) erl(2, 3) erl(25, 4) 468 6 33

erl(1, 1) erl(2, 2) erl(5, 3) erl(50, 4) 1835 74 2985

erl(1, 1) erl(3, 2) erl(5, 3) erl(50, 4) 2448 122 4010

erl(1, 1) erl(3, 2) erl(5, 3) erl(60, 4) 2928 238 8443

erl(1, 1) erl(3, 2) erl(5, 3) erl(70, 4) 3408 487 16487

Table 6.1: Different operations using the max operator

We can see that our heuristic gets much better results than the naive approach. For the

large expressions, we reach computation times that are about 33-37 times faster than

the naive approach.

We now also analyze expressions of the form min(Op1, Op2, Op3, Op4). Table 6.2

shows the computation results.

39

6.2. Conclusion Chapter 6. Evaluation & Conclusion

Op1 Op2 Op3 Op4 State Space
Computation time in sec

Heuristic Approach 1

erl(4, 1) erl(6, 2) erl(20, 3) erl(200, 4) 96001 31 47

erl(4, 1) erl(6, 2) erl(24, 3) erl(280, 4) 161281 84 120

erl(4, 1) erl(6, 2) erl(24, 3) erl(400, 4) 230401 181 249

erl(4, 1) erl(6, 2) erl(24, 3) erl(800, 4) 460801 882 1030

erl(8, 1) erl(12, 2) erl(48, 3) erl(800, 4) 3686401 2883 4353

Table 6.2: Different operations using the min operator

The results underline the observations of the previous chapter. We still receive better

computation times, but the differences aren’t as large as the ones of the max operator.

6.2 Conclusion

Throughout the thesis, we developed an Android app that uses the APHMIN webservice

and provides a user-friendly interface to build CCC expressions using Drag & Drop. The

app uses n-ary versions of the max , min and con operator and transforms them into their

binary versions, so that the webservice can handle them. A heuristic was developed for

this transformation which leads to much better computation times than any intuitional

approach. The idea behind the heuristic is based on the Divide & Conquer mechanism

that is used by APHMIN . Because the tool applies the minimization algorithm to every

operand of the operators, the heuristic tries to reduce the state space in early stages.

The speed up that is reached by the heuristic depends on the actual expression that

is transformed. The expressions used in the evaluation section were optimized to show

large differences in computation. If the order of the operands had been inverted, the

heuristic would have delivered the same transformations than the naive approach. This

case is uninteresting, because we would achieve the exact same computation times.

A case where the heuristic may not compute the best transformation is whenever the

sizes of the operands only differ a little bit. In this case, sorting the operands according

to the density of the transitions that occur in the minimized representations might lead

to slightly better computation times for other transformations. However, this is hard to

predict because we don’t have much information in advance about the minimization of

the operands. So the heuristic leads to good results with efficient computation times.

40

Bibliography

[1] Pepijn Crouzen and Frédéric Lang. Smart reduction. In Dimitra Giannakopoulou

and Fernando Orejas, editors, Fundamental Approaches to Software Engineering,

volume 6603 of Lecture Notes in Computer Science, pages 111–126. Springer Berlin

Heidelberg, 2011.

[2] Qi-Ming He and Hanqin Zhang. Spectral polynomial algorithms for computing bi-

diagonal representations for phase type distributions and matrix-exponential distri-

butions. Stochastic Models, 22(2):289–317, 2006.

[3] R. Pulungan. Reduction of Acyclic Phase-Type Representations. PhD thesis, Uni-

versität des Saarlandes, 2009.

[4] R. Pulungan and H. Hermanns. Acyclic minimality by construction—almost. In

Sixth International Conference on the Quantitative Evaluation of Systems, 2009.

QEST ’09., pages 63–72, 2009.

[5] Reza Pulungan and Holger Hermanns. A construction and minimization service for

continuous probability distributions. International Journal on Software Tools for

Technology Transfer, pages 1–14, 2013.

41

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,______________________ _____________________________
 (Datum/Date) (Unterschrift/Signature)

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass die vorliegende Arbeit mit der elektronischen Version
übereinstimmt.

Statement in Lieu of an Oath

I hereby confirm the congruence of the contents of the printed data and the electronic version of
the thesis.

Saarbrücken,…………………………….. ………………………………………….
 (Datum / Date) (Unterschrift / Signature)

	Introduction
	Basic Knowledge
	Mathematical Basics
	Continuous-Time Markov Chains
	Phase-Type Distributions
	Canonical Representations
	Stochastic Operators

	Cox & Convenience Calculus
	Basic Delay
	Cox Operator
	Sequential Composition
	Parallel Composition
	Choice Operator

	Minimization of PH-Distributions
	Minimization Algorithm
	APHMIN Tool
	Input
	Output

	The Android App
	Basic Design Ideas
	User Interface and Semantics
	Operator and subclasses
	Icon
	Aphmin

	Connection to Webservice

	Dealing with n-ary Operators
	Intuitional Approach
	Basic Ideas
	Size of Operands
	Maximum Operator
	Minimum Operator
	Convolution Operator
	Results

	Density of Transitions
	Transition Density vs. Size
	Implementation of the Heuristic

	Evaluation & Conclusion
	Evaluation
	Conclusion

