
Probabilistic Reachability for Parametric

Markov Models⋆

Ernst Moritz Hahn, Holger Hermanns and Lijun Zhang

Department of Computer Science, Saarland University, Germany

{emh,hermanns,zhang}@cs.uni-sb.de

Abstract. Given a parametric Markov model, we consider the problem
of computing the formula expressing the probability of reaching a given
set of states. To attack this principal problem, Daws has suggested to
first convert the Markov chain into a finite automaton, from which a
regular expression is computed. Afterwards, this expression is evaluated
to a closed form expression representing the reachability probability.

This paper investigates how this idea can be turned into an effective
procedure. It turns out that the bottleneck lies in an exponential growth
of the regular expression relative to the number of states. We therefore
proceed differently, by tightly intertwining the regular expression compu-
tation with its evaluation. This allows us to arrive at an effective method
that avoids the exponential blow up in most practical cases. We give a
detailed account of the approach, also extending to parametric models
with rewards and with non-determinism. Experimental evidence is pro-
vided, illustrating that our implementation provides meaningful insights
on non-trivial models.

1 Introduction

Markov processes have been applied successfully to reason about quantitative
properties in a large number of areas such as computer science, engineering,
mathematics, biological systems. This paper is about parametric Markov pro-
cesses. In this model class certain aspects are not fixed, but depend on parameters
of the model. As an example, consider a communication network with a lossy
channel, where whenever a package is sent, it is received with probability x but
lost with probability 1 − x. Such a network can be specified in a probabilistic
variation of the PROMELA language [2]. In this context, we might aim, for in-
stance, at determining parametric reachability probabilities, i.e., the probability
to reach a given set of target states. This probability is a rational function in x.

⋆ This work is supported by the NWO-DFG bilateral project VOSS, by the DFG as
part of the Transregional Collaborative Research Center SFB/TR 14 AVACS and
the Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”, and has received
funding from the European Community’s Seventh Framework Programme under
grant agreement no 214755.

For (discrete-time) Markov chains (MCs), Daws [8] has devised a language-
theoretic approach to solve this problem. In this approach, the transition prob-
abilities are considered as letters of an alphabet. Thus, the model can be viewed
as a finite automaton. Then, based on the state elimination [15] method, the
regular expression describing the language of such an automaton is calculated.
In a postprocessing step, this regular expression is recursively evaluated result-
ing in a rational function over the parameters of the model. Recently, Gruber
and Johannsen [11] have shown, however, that the size of the regular expression
of a finite automaton explodes: it is nΘ(log n) where n is the number of states.

This excessive growth is not only a theoretical insight, but also a very practi-
cal problem, as we will discuss. The goal of this paper is to nevertheless present
an efficient and effective algorithm for parametric Markov models. Apart from
Markov chains, we also consider extensions with rewards or non-determinism.

Our method core is also rooted in the state elimination algorithm. The key
difference to [8] is that instead of postprocessing a (possibly prohibitively large)
regular expression, we intertwine the state elimination and the computation of
the rational function. More precisely, in a state elimination step, we do not
use regular expressions to label edges, but label the edges directly with the
appropriate rational function representing flow of probabilities. This also means
that we do not work on a finite automaton representation, but instead stay in
the domain of MCs all along the process.

We obtain the rational functions in a way inspired by the evaluation of [8].
But since we do this as early as possible, we can exploit symmetries, cancellations
and simplifications of arithmetic expressions, especially if most of the transition
probabilities of the input model are constants. In practice, this induces drastic
savings in the size of the intermediate rational function representations, and
hence is the key to an efficient implementation, as experimental evidence shows.

We apply this idea to parametric Markov reward models (MRMs) in which
states and transitions are additionally equipped with reward structures, and
these reward structures are possibly parametric. We discuss how to compute
the expected accumulated reward with respect to a set of target states B. In-
tuitively, this amounts to the sum of probabilities of paths leading to B, each
weighted with the reward accumulated along this path. A direct extension of
the state elimination approach does not work for MRMs, as in the final regular
expression the probability of individual paths leading to B is lost. Surprisingly,
our modified approach for parametric MCs can be extended in a straightforward
way to handle reward models. Each time we eliminate a state, the transition
probabilities are updated as for the underlying parametric MCs. Notably, we
update the reward function corresponding to the weighted sum representing the
local expected accumulated rewards.

To round off the applicability of our method, we present an extension which
can tackle parametric Markov decision processes (MDPs), models which involve
both probabilistic and non-determinism choices. Here, we are interested in the
maximal probability of reaching a given set of target states. In order to answer
this question, we encode the non-deterministic choices via additional binary pa-

rameters, which induce a parametric MC. This is then submitted to the dedicated
algorithm for parametric MCs.

In all settings, we reduce the state space prior to state elimination, by ex-
tending standard strong [9] and weak bisimulation [3] quotioning techniques to
parametric MCs and MRMs. A very important observation is that for paramet-
ric MDPs we can apply the quotioning on the encoded parametric MC, since
this preserves the maximal probabilistic reachability. This allows us to minimise
parametric MDPs efficiently. We have implemented the algorithms in our tool
Param, including the parametric bisimulation quotioning. We illustrate the fea-
sibility of the entire approach on a number of non-trivial parametric MCs, MRMs
and MDPs.

Our work has connections to several other recent scientific contributions.
In [19], Lanotte et al. considered parametric MCs, showing that the problem
whether there exists a well-defined evaluation is undecidable. Moreover, the
problem to minimise or maximise unbounded probabilistic reachability is also
shown to be undecidable. For parametric continuous-time Markov chains, Han
et al. [12] have provided approximation algorithms to find valid valuations with
respect to time bounded reachability properties. Recently, Damman et al. [7]
have extended the approach of [8] to generate counterexamples for MC. The
regular expressions generated can be seen as a more compact and structured
representation of counterexamples than providing a set of paths.
Organisation of the paper. In Section 2 we introduce the parametric models
used in this paper. Then, we present our main algorithms for parametric MCs,
MRMs and MDPs in Section 3. In this section we also discuss bisimulation
minimisation for parametric models and the complexity of our algorithms. We
provide experimental results in Section 4. In Section 5, we compare our method
to the original approach of Daws. Finally, Section 6 concludes this paper.

2 Parametric Models

In this section we present the parametric models which we will use throughout
the paper. Firstly, we introduce some general notations. Let S be a finite set.
For a relation E ⊆ S × S, let E(s) = {s′ | (s, s′) ∈ E}, and E−1(s) = {s′ |
(s′, s) ∈ E}. We let V = {x1, . . . , xn} denote a set of variables with domain R.
An evaluation u is a partial function u : V ⇀ R. We let Dom(u) denote the
domain of u. We say u is total if Dom(u) = V . A polynomial g over V is a sum
of monomials g(x1, . . . , xn) =

∑

i1,...,in
ai1,...,in

xi1
1 · · ·xin

n where each ij ∈ N0 and
each ai1,...,in

∈ R. A rational function f over a set of variables V is a fraction

f(x1, . . . , xn) = f1(x1,...,xn)
f2(x1,...,xn) of two polynomials f1, f2 over V . Let FV denote the

set of rational functions from V to R. Given f ∈ FV , a set of variables X ⊆ V ,
and an evaluation u, we let f [X/u] denote the rational function obtained by
substituting each occurrence of x ∈ X ∩ Dom(u) with u(x).

Definition 1. A parametric Markov chain (PMC) is a tuple D = (S, s0,P, V)
where S is a finite set of states, s0 is the initial state, V = {v1, . . . , vn} is a
finite set of parameters and P is the probability matrix P : S × S → FV .

PMCs have already been introduced in [8,19]. We now define the underlying
graph of a PMC.

Definition 2. The underlying graph GD of a PMC D = (S, s0,P, V) is defined
as GD = (S,ED) where ED = {(s, s′) | P(s, s′) 6= 0}.

We omit the subscript D if it is clear from the context. Note that 6= compares
whether a rational function is different from zero. Based on the above definition,
we introduce some more notations. For s ∈ S, we let pre(s) = E−1(s) denote
the set of predecessors of s, and let post(s) = E(s) denote the set of successors
of s. We say that s′ is reachable from s, denoted by reachGD (s, s′), if s′ is reach-
able from s in the underlying graph GD. For A ⊂ S, we write reachGD (s,A) if
reachGD (s, s′) for any s′ ∈ A. We omit the superscript GD if it is clear from the
context. Now we define the induced PMC with respect to an evaluation:

Definition 3. Given a PMC D = (S, s0,P, V) and an evaluation u. The induced
PMC Du by u is defined by Du = (S, s0,Pu, V \ Dom(u)) where the transition
matrix Pu : S × S → FV is defined by Pu(s, s′) = P(s, s′)[Dom(u)/u].

We introduce the notion of well-defined evaluations. A total evaluation u is
well-defined for D if Pu(s, s′) ∈ [0, 1] for all s, s′ ∈ S, and Pu(s, S) ∈ [0, 1]
for all s ∈ S where Pu(s, S) denotes the sum

∑

s′∈S Pu(s, s′). Intuitively, u
is well-defined if and only if the resulting PMC Du is then an ordinary MC
without parameters. For well-defined evaluation, state s is called stochastic if
Pu(s, S) = 1, sub-stochastic if Pu(s, S) < 1. If Pu(s, S) = 0, s is called absorbing.

Let u be a well-defined evaluation, and consider the underlying graphs GD =
(S,ED) and GDu

= (S,EDu
). Obviously, it holds that EDu

⊆ ED. We say that
the total evaluation function u is strictly well-defined if the equality holds, i.e.,
EDu

= ED. Intuitively, a strictly well-defined evaluation does not destroy the
reachability property of the underlying graph. This implies that any edge with
function f evaluates to a non-zero probability. As probabilities often correspond
to failure probabilities, we often do not need to consider non-strictly well-defined
evaluations; we are usually not interested in considering that the probability of a
failure is 0 or, at the other hand, that the probability of success is 0. Contrariwise,
those cases can be handled easily: we can just remove the edges which have zero
probability under an evaluation which is not strictly well-defined beforehand and
then start an extra run of our approach.

An infinite path is an infinite sequence σ = s0s1s2 . . . of states, and a finite
path is a finite sequence σ = s0s1s2 . . . sn of states. A finite path σ = s0s1s2 . . . sn

has length |σ| = n. Let first(σ) = s0 denote the first state, and last(σ) = sn

denote the last state (for a finite path). A maximal path is either an infinite
path or a finite path σ such that last(σ) is absorbing. With σ[i] we denote the
ith state of σ. Let PathD denote the set of maximal paths of D, Pathfin the set
of finite paths. Let PathD(s) (PathD

fin(s)) be the set of maximal (finite) paths
starting in s. For a finite path σ, we define a rational function PrD(σ) ∈ FV

by PrD(σ) =
∏|σ|−1

i=0 P(σ[i], σ[i + 1]). For a set of paths C ⊆ PathD
fin such that

there are no σ, σ′ ∈ C where σ is a prefix of σ′, let PrD(C) =
∑

σ∈C PrD(σ).

The function PrD can be uniquely extended to the set of paths PathD. For a
well-defined evaluation u, PrD(σ)[V/u] is exactly the probability of the path σ in
Du, and PrDu is the uniquely defined probability measure over the set of paths
PathD given a fixed initial state s0. We omit the superscript D if it is clear from
the context. Now we consider the extension of PMCs with rewards:

Definition 4. A PMRM is a tuple R = (D, r) where D = (S, s0,P, V) is a
PMC and r : (S ∪ (S × S)) → FV is the reward function.

Intuitively, for state s, s′ ∈ S, r(s) is the reward gained by visiting s, and
r(s, s′) denotes the reward gained if the transition from s to s′ is taken. Both
r(s) and r(s, s′) are rational functions over V . The evaluation u is well-defined
and strictly well-defined for R iff it is well-defined and strictly well-defined for D,
respectively. We will also use paths as well as the underlying graph of R = (D, r)
without referring to D explicitly. Finally, we consider parametric Markov decision
processes which are extensions of PMCs with non-deterministic decisions:

Definition 5. A parametric Markov decision process (PMDP) is a tuple M =
(S, s0,Act ,P, V) where S, s0 and V are as for PMCs, Act is a finite set of
actions. The transition probability matrix P is a function P : S×Act×S → FV .

As for PMCs, we introduce the PMDP induced by a valuation function:

Definition 6. Given a PMDP M = (S, s0,Act ,P, V) and an evaluation u, the
PMDP induced by u is defined by Mu = (S, s0,Act ,Pu, V \ Dom(u)) where
Pu : S × Act × S → FV is defined by Pu(s, a, s′) = P(s, a, s′)[Dom(u)/u].

With Act(s) = {a | ∃s′ ∈ S. P(s, a, s′) 6= 0} we specify the set of enabled
actions of a state. An infinite path of M is an infinite sequence σ = s0a0s1a1 . . .,
and a path is a finite sequence σ = s0a0s1a1 . . . sn. The notations maximal path,
σ[i], PathM, PathM

fin , PathM(s) and PathM
fin(s) are defined in a similar way as for

PMCs. The non-deterministic choices are resolved by the notion of schedulers.
A scheduler is a function A : PathM

fin(s0) → Act satisfying: for σ ∈ PathM
fin(s0),

A(σ) = a implies a ∈ Act(last(σ)). We say that A is stationary if A depends
only on the last state, i.e., A is a function A : S → Act . With MD(M) we denote
the set of stationary schedulers of M. A stationary scheduler induces a PMC as
follows:

Definition 7. Given a PMDP M = (S, s0,Act ,P, V) and a stationary sched-
uler A, the induced PMC by A is defined as MA = (S, s0,PA, V) where the
transition matrix PA : S × S → FV is defined by PA(s, s′) = P(s,A(s), s′).

A total evaluation u is called strictly well-defined for M if for each stationary
scheduler A ∈ MD(M), u is strictly well-defined for MA. For strictly well-defined
evaluation u, let PrMu,A denote the probability measure in the PMC (MA)u.

2.1 Bisimulation Relations

A bisimulation is an equivalence relation on states which subsumes states sat-
isfying the same properties. Now we extend the standard strong [17] and weak
bisimulation [4] relations for Markov models to our parametric setting in an
obvious way.

Definition 8. Let D = (S, s0,P, V) be a PMC and R be an equivalence relation
on S. R is a strong bisimulation on D with respect to B if for all s1Rs2 it holds
s1 ∈ B iff s2 ∈ B, and for all C ∈ S/R it holds P(s1, C) = P(s2, C)

States s1 and s2 are strongly bisimilar, denoted s1 ∼D s2 iff there exists a
strong bisimulation R on D. Note that we have operations on functions in the
definition, instead of numbers. For PMRMs, strong bisimulation is obtained by
additionally requiring that r(s1) = r(s2) and r(s1, C) = r(s2, C) for all C ∈ S/R
if s1Rs2. Now we give the notion of weak bisimulation:

Definition 9. Let D = (S, s0,P, V) be a PMC and R be an equivalence relation
on S. Let B be a set of target states. R is a weak bisimulation on D with respect
to B if for all s1Rs2 s1 ∈ B iff s2 ∈ B, and

1. If P(si, [si]R) 6= 1 for i = 1, 2 then for all C ∈ S/R, C 6= [s1]R = [s2]R:
P(s1,C)

1−P(s1,[s1]R) = P(s2,C)
1−P(s2,[s2]R)

2. s1 can reach a state outside [s1]R iff s2 can reach a state outside [s2]R.

We say that states s1 and s2 are weakly bisimilar, denoted s1 ≈D s2 iff there
exists a weak bisimulation R on D. Weak bisimulation is strictly coarser than
strong bisimulation. To the best of our knowledge, weak bisimulation has not
been introduced for Markov reward models.

3 Algorithms

Parametric MCs. Let D be a PMC and let B be a set of target states. We are
interested in the parametric probabilistic reachability, i.e., the function represent-
ing the probability to reach a set of target states B from s0, for all well-defined
valuations. This is defined by PrD({σ | σ[0] = s0 ∧ ∃i.σ[i] ∈ B}).

Daws [8] has already solved this problem as follows. First, the PMC is trans-
formed into a finite automaton, with the same initial state, and B as the final
states. Transition probabilities are described by symbols from an alphabet of
the automaton of the form p

q
or x representing rational numbers, or variables.

Afterwards, based on the state elimination [15] method, the regular expression
describing the language of such an automaton is calculated. Then, these regular
expressions are evaluated into rational functions representing the probability to
finally reach the target states. However, this approach can become very costly,
as the length of a regular expression obtained from automaton is nΘ(log n) [11].

In this section, we present an improved algorithm in which state elimination
and the computation of rational functions are intertwined. As we do not com-
pute the regular expressions as an intermediate step anymore, this allows for a

Algorithm 1 Parametric probabilistic reachability for PMCs

Require: PMC D = (S, s0,P, V) and the set of target states B. State s ∈ B is
absorbing. For all s ∈ S, it holds reach(s0, s) and reach(s,B).

1: for all s ∈ S \ ({s0} ∪ B) do

2: for all (s1, s2) ∈ pre(s) × post(s) do

3: P(s1, s2) = P(s1, s2) + P(s1, s)
1

1−P(s,s)P(s, s2)

4: eliminate(s)
5: return 1

1−P(s0,s0)
P(s0,B)

more efficient implementation. The reason is that the rational functions can be
simplified during the state elimination steps, thus avoiding the blowup of regular
expressions.

pd

pa
1

1−pc
pb + pd

ss1 s2 s1 s2pbpa

pc

The algorithm is presented in Algorithm 1. The input is a PMC D and a set of
target states B. Since we are interested in the probabilistic reachability, w.l.o.g.,
we can make the target states absorbing, and remove states not reachable from
s0, or which can not reach B a priori. A usual search algorithm is sufficient for
this preparation. In the algorithm +, −, etc. are operations for rational func-
tions, and exact arithmetic is used to avoid numerical problems. The key idea of
the algorithm is to eliminate states from the PMC one by one, while maintaining
the probabilistic reachability. The elimination of a single state s 6∈ {s0} ∪ B is
illustrated in the figure above. The labels represent the corresponding transition
probabilities. The function eliminate(s) eliminates state s from D. When elim-
inating s, we consider all pairs (s1, s2) ∈ pre(s) × post(s). After eliminating s,
the new transition probability from s1 to s2 becomes f(s1, s2) := pd + papb

1−pc
. The

second term papb

1−pc
is the geometric sum

∑∞
i=0 papi

cpb = papb

1−pc
, which corresponds

to the probability of reaching s2 from s1 through s.
Now we discuss the correctness of our algorithm. Consider the simple PMC

in the figure above. Assume that we have V = {pa, pb, pc, pd}. For strictly well-
defined evaluation, our computed rational function f(s1, s2) is correct, which
can be seen as follows. If u is strictly well-defined, we have that ED = EDu

,
implying that u(pc) > 0, u(pb) > 0 and u(pc) + u(pb) ≤ 1. This indicates also
that the denominator 1−u(pc) is not zero. Obviously, for well-defined evaluation
u with u(pc) = 1, our result f(s1, s2) is not defined at all. The problem is that
state s can not reach s2 in GDu

any more. Now consider another well-defined
evaluation (but not strictly well-defined) u satisfying u(pc) = 0 and u(pb) = 1. It
is easy to check that f(s1, s2) returns the right result in this case. We introduce
the notion of maximal well-defined evaluations for this purpose. Let the PMC
D and the set B satisfy the requirements of our algorithm. The total evaluation

Algorithm 2 Parametric Expected Reward for PMRM

Require: PMRM M = (D, r) with D = (S, s0,P, V), the set of target states
B. State s ∈ B is absorbing. For all s ∈ S, it holds that reach(s0, s) and
reach(s,B).

1: for all s ∈ S \ ({s0} ∪ B) do

2: for all (s1, s2) ∈ pre(s) × post(s) do

3: pe = P(s1, s)
1

1−P(s,s)P(s, s2)

4: re = r(s1, s) + r(s, s2) + r(s) + P(s,s)
1−P(s,s) (r(s, s) + r(s))

5: r(s1, s2) = pere+P(s1,s2)r(s1,s2)
pe+P(s1,s2)

6: P(s1, s2) = P(s1, s2) + pe

7: eliminate(s)

8: return
∑

s∈B
{ P(s0,s)

1−P(s0,s0)
(r(s0)+r(s0, s))+

P(s0,s0)P(s0,s)
(1−P(s0,s0))2

(r(s0, s0) + r(s0))}

u is maximal well-defined, if it is well-defined, and if for each s ∈ S it holds
that reachDu(s,B). This means that we can still reach the set of target states
from all states of the model after inserting values into the parametric model
according to the evaluation. Notice that this does not mean that the reachability
probability is 1, because we allow sub-stochastic models. We can handle non-
maximal evaluations by additional preprocessing, which is skipped here. Now
we give the correctness of Algorithm 1. The detailed inductive based proof is
presented in Appendix A.1.

Lemma 1. Assume that the PMC D and set of states B satisfy the requirement
of Algorithm 1. Assume that the algorithm returns f ∈ FV . Then, for maximal
well-defined evaluation u it holds that PrDu(s0,B) = f [V/u].

Parametric MRMs. Let R = (D, r) be a PMRM with D = (S, s0,P, V). Let
B ⊆ S be a set of target states. We are interested in the parametric expected ac-
cumulated reward [18] until B, which is denoted by R(s0,B). Formally, R(s0,B)
is the expectation of the random variable X : σ ∈ PathD(s0) → R≥0 which is
defined by: X(σ) equals 0 if first(σ) ∈ B, ∞ if σ[i] /∈ B for all i, and equals
∑min{j|σ[j]∈B}−1

i=0 r(σ[i]) + r(σ[i], σ[i + 1]) otherwise.
In Algorithm 2, we extend the algorithm for PMCs to handle PMRMs. The

input model is a PMRM M = (D, r) where we have the same requirement of
D as Algorithm 1 plus the assumption that the set of target states is reached
with probability 1 for the evaluations under consideration. We discuss briefly
how other special cases can be dealt with by means of simple search algorithms.
As for PMCs, states not reachable from s0 need not be considered. Assume
that there exists a state s satisfying the property that reach(s0, s) and that
¬reach(s,B). By definition, any path σ containing s would have infinite reward,
which implies also that R(s0,B) = ∞.

Assume that D satisfies the requirement of the algorithm. In this case we
have R(s0,B) =

∑

σ Pr(σ) · X(σ) where σ ranges over all finite and maximal

pd/rd

s1

pd/rd

pe/re

s2 s1 s2s1 s/rs s2

pa/ra pb/rb

pc/rc

(pe + pd) /
(

pere+pdrd

pe+pd

)

Fig. 1. State elimination for MRMs: pe = papb

1−pc
, re = ra +rb +rs + pc

1−pc
(rc + rs)

paths of D. The key part of the algorithm is the adaption of the state elimination
algorithm for M. Consider the pair (s1, s2) ∈ pre(s) × post(s). The core is how
to obtain the transition reward for the new transition (s1, s2) after eliminating s.
Consider Figure 1, where the label p/r of the edge (s, s′) denotes the transition
probability and the transition reward of the transition respectively. We con-
struct the transition from s1 to s2 in two steps. In the first step we assume that
P(s1, s2) = 0 (pd = 0 in the figure). As for PMCs, after removing s, the probabil-
ity of moving from s1 to s2 is the infinite sum f(s1, s2) :=

∑∞
i=0 papi

cpb = papb

1−pc
.

Strictly according our definition, the expected accumulated rewards would be

g(s1, s2) :=

∞
∑

i=0

(papi
cpb) · (ra + rs + (rc + rs)i + rb)

= (ra + rs + rb)
papb

1 − pc

+ papb(rc + rs)

∞
∑

i=0

ipi
c

The sum
∑∞

i=0 ipi
c can be simplified to pc

(1−pc)2
. Then, we would take the function

re := g(s1,s2)
f(s1,s2)

for the new reward from (s1, s2). It can be simplified to re =

ra + rb + rs + pc

1−pc
(rc + rs). This reward can be understood as follows. The sum

ra+rb+rs corresponds to the rewards via visiting s and taking transitions (s1, s)
and (s, s2). The term pc

1−pc
can be interpreted as the expected number of times

that the self-loop of s is taken, thus the second part is obtained by multiplying
it with the rewards rc + rs of a single loop.

Now we take account of the case P(s1, s2) > 0. The probability becomes then
pe + pd where pe = papb

1−pc
and pd = P(s1, s2). A similar analysis as above allows

us to get the reward pere+pdrd

pe+pd
. Now for the correctness of the algorithm for the

expected reward.

Lemma 2. Assume that the PMRM R = (D, r) and B satisfy the requirement
of Algorithm 2. Assume that the algorithm returns f ∈ FV . Let u be a maximal
well-defined evaluation. Then, it holds that R(s0,B) = f [V/u].

Parametric MDP. Let M = (S, s0,Act ,P, V) be a PMDP, B ⊆ S a set of tar-
get states. Our goal of this section is to compute the maximal parametric reacha-
bility probability of B in M with respect to all schedulers. Formally, we want to

compute the maximum maxA PrMu,A(s0,B) for each strictly well-defined val-
uation u, with A ranging over all schedulers. For the ordinary MDP case (e.g.
Mu where u is strictly well-defined), as shown in [5], the class of stationary
schedulers is sufficient to achieve this maximum probabilistic reachability. For
PMDPs, different stationary schedulers are needed for different evaluations:

Example 1. Consider the PMDP M = ({s0, s1, s2} , s0, {a, b} ,P, {x}) where P

is defined by: P(s0, a, s1) = P(s0, a, s2) = 1
2 ,P(s0, b, s1) = x,P(s0, b, s2) = 1−x.

Let B = {s1}. Obviously, for x ≤ 1
2 taking decision a we get the maximal

reachability probability 1
2 . Moreover, for x ≥ 1

2 we get the maximal probability
x with decision b.

We introduce binary variables to encode non-deterministic choices in PMDPs,
as anticipated in [8]. For state s ∈ S with k = |Act(s)| non-deterministic choices,
we need to introduce k − 1 variables.

Definition 10. Let s ∈ S with |Act(s)| > 1. Let δ(s) ∈ Act(s) be an arbitrary
selected action. Then, for each a ∈ Act(s) and a 6= δ(s), we introduce a binary
variable vs,a, denoted by enc(s, a), to encode the transition with respect to a
from s. The transition with respect to δ(s) is encoded via enc(s, δ(s)) := 1 −
∑

b∈Act(s),b 6=δ(s) vs,b.

In the following, we fix δ as defined above and let Varδ denote the set of
these variables, all of which have domain {0, 1}. Intuitively, vs,a = 1 indicates
that the transition labelled with a is taken from s. Now we define the encoding
of M with respect to Varδ.

Definition 11. Let M = (S, s0,Act ,P, V) be a PMDP. The encoding PMC
with respect to Varδ is defined as enc(M) = (S, s0,Pδ, V ∪̇Varδ) where

Pδ(s, s
′) =

∑

a∈Act

P(s, a, s′) · enc(s, a)

To avoid confusion, we use v : Varδ ⇀ {0, 1} to denote the evaluation func-
tion for Varδ. We say v is stationary, if for each s with |Act(s)| > 1, there exists
at most one a ∈ Act(s) \ {δ(s)} with v(vs,a) = 1. We let SEX denote the set
of stationary evaluations v with domain Dom(v) = X, and let SE := SEVarδ

.
Observe that if v(vs,a) = 0 for all a ∈ Act(s) \ {δ(s)}, the transition labelled
with δ(s) is selected.

We can apply Algorithm 1 on the encoding PMC to compute the paramet-
ric probabilistic reachability. In the following we discuss how to transform this
back to the maximal probabilistic reachability for the original PMDPs. The fol-
lowing lemma states that each stationary scheduler corresponds to a stationary
evaluation with respect to Varδ:

Lemma 3. Let M = (S, s0,Act ,P, V) be a PMDP. Then for each stationary
scheduler A there is a stationary evaluation v ∈ SE such that MA = (enc(M))v.
Moreover, for each stationary evaluation v ∈ SE there exists a stationary sched-
uler A such that (enc(M))v = MA.

The above lemma suggests that for a strictly well-defined evaluation u of M,
maxA∈MD(M) PrMu,A(s0,B) is the same as maxv∈SE Pr (enc(Mu))v (s0,B). The
following lemma discusses the computation of this maximum:

Lemma 4. Let M = (S, s0,Act ,P, V) be a PMDP and let f be the function
obtained by applying Algorithm 1 on enc(M). Let Varf denote the set of variables
occurring in f . Then for each strictly well-defined evaluation u of M, it holds
that:

max
A∈MD(M)

PrMu,A(s0,B) = max
v∈SEVarδ∩Varf

f [Varδ/v][V/u]

In worst case, we have SEVarδ∩Varf
= SE . The size |SE | =

∏

s∈S |Act(s)|
grows exponential in the number of states s with |Act(s) > 1|.
Bisimulation Minimisation for Parametric Models. We discuss how to
apply bisimulation strategy to reduce the state space. For PMCs, both strong and
weak bisimulation can be applied, while for PMRMs only strong bisimulation is
used. The most interesting part is for PMDPs, for which we minimise the encoded
PMC instead of the original one. The following lemma shows that strong (weak)
bisimilar states in D are also strong (weak) bisimilar in Du for each maximal
well-defined evaluation:

Lemma 5. Let D = (S, s0,P, V) be a PMC with s1, s2 ∈ S. Let B be a set of
target states. Then, for all maximal well-defined evaluation u, s1 ∼D s2 implies
that s1 ∼Du

s2, and s1 ≈D s2 implies that s1 ≈Du
s2.

Both strong and weak bisimulation preserve the probabilistic reachability
for ordinary MCs [13,3]. By the above lemma, for PMCs, both strong and weak
bisimulation preserve probabilistic reachability for all maximal well-defined eval-
uations. Similar result holds for PMRMs: if two states s1, s2 of M = (D, r) are
strong bisimilar, i.e. s1 ∼M s2, then for all maximal well-defined evaluations u,
we have s1 ∼Mu

s2. As a consequence, strong bisimulation preserve expected
accumulated reward for all well-defined evaluations for MRMs.

Now we discuss how to minimise PMDPs. Instead of computing the bisimula-
tion quotient on the original PMDPs M, we apply the bisimulation minimisation
algorithms on the encoded PMCs enc(M). Since both strong and weak bisimu-
lation preserve reachability for PMCs, by Lemma 3 and Lemma 4, bisimulation
minimisation on the encoded PMC enc(M) also preserves the maximal proba-
bilistic reachability on M with respect to strictly well-defined evaluations. Thus,
we can apply the efficient strong and weak bisimulation algorithm for the encod-
ing PMC directly. The following example illustrates the use of strong and weak
simulations for PMDPs:

1 − vs3,a

s1

s2

s3 s4

1 1

s0

1

s0

s1

s2

1

s3

1 − vs0,a 1

vs0,a

vs3,a

Example 2. Consider the encoding PMC on the left of the above figure. States
s1, s2 are obviously strong bisimilar. Moreover, in the quotient, we have that the
probability of going to the equivalence class {s1, s2} from s0 is 1, in which the
variable vs,a disappeared. Now consider the right part. In this encoding PMC,
states s1, s2, s3 are weak bisimilar, for both cases vs3,a = 1 and vs3,a = 0.

Complexity. Since our algorithm is dealing with rational functions, we first
discuss briefly the complexity of arithmetic for polynomials and rational func-
tions. For more detail we refer to [10]. For a polynomial f , let mon(f) denote
the number of monomials. Addition and subtraction of two polynomials f and
g are performed by adding or subtracting coefficients of like monomials, which
take time mon(f) + mon(g). Multiplication is performed by cross-multiplying
each monomials, which takes O(mon(f) · mon(g)). Division of two polynomials
results a rational function, which is then simplified by shortening the greatest
common divisor (GCD), which can be obtained efficiently using variation of the
Euclid’s algorithm. Arithmetic for rational functions reduces to manipulation
of polynomials, for example f1

f2
+ g1

g2
= f1g2+f2g1

f2g2
. Checking whether two ratio-

nal functions f1

f2
= g1

g2
are the same as to check whether f1g2 − f2g1 is a zero

polynomial.
We now discuss the complexity of our algorithms. In each elimination step,

we have to update the transition functions (or rewards for MRMs) which takes
O(n2) polynomial operations in worst case. Thus, all together O(n3) many op-
erations are needed to get the final function, which is the same as in the state
elimination algorithm [6]. The complexity of arithmetic for polynomials depends
on the degrees.

For PMDPs, we first encode the non-deterministic choices via new binary
variables. Then, the encoding PMC is submitted to the dedicated algorithm
for parametric MCs. The final function can contain thus both variables from
the input model and variables encoding the non-determinism. As shown in
Lemma 4, the evaluation is exponential in the number of variables encoding
the non-determinism occurring in the final rational function.

We also discuss briefly the complexity of the bisimulation minimisation algo-
rithms. For ordinary MCs, strong bisimulation can be computed [9] in O(m log n)
where n,m denote the number of states and transitions respectively. The com-
plexity of deciding weak bisimulation [3] is O(mn). These algorithms can be
extended to PMCs directly, with the support of operations on functions. The
complexity is then O(m log n) and O(mn) many operations on rational func-
tions.

4 Case Studies

We have build the tool Param, which implements our new algorithms, including
both the state-elimination algorithm as well as the bisimulation minimisation
algorithm. Param allows guarded-commands based input language supporting
MC, MRM and MDPs. The language is extended from Prism [14] with unknown
parameters. Properties are specified by PCTL formulae without nesting.

 0 0.2 0.4 0.6 0.8 1 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 0.4

 0.8

P
B 0

 0.2
 0.4

 0.6 0
 0.2

 0.4
 0.6

 140

 144

 148

 152

p
q

Fig. 2. Left: Crowds Protocol. Right: Zeroconf

The sparse matrices are constructed from the model, and then the set of tar-
get states B are extracted from the formula. Then, bisimulation minimisation
can be applied to reduce the state space. For MCs, both strong and weak bisim-
ulation applies, and for MRMs, currently only strong bisimulation is supported.
For PMDP, bisimulation is run for the encoded PMC. We use the computer
algebra library CoCoALib[1] for handling arithmetic of rational functions, for
example the basic arithmetic operations, comparisons and simplification.

We consider a selection of case studies to illustrate the practicality of our
approach. All of the models are extended from the corresponding Prism models.
All experiments were run on a Linux machine with an AMD Athlon(tm) XP
2600+ processor at 2 GHz equipped with 2GB of RAM.

Crowds Protocol. The intention of the Crowds protocol [21] is to protect the
anonymity of Internet users. The protocol hides each user’s communications via
random routing. Assume that we have N honest Crowd members, and M dis-
honest members. Moreover, assume that there are R different path reformulates.
The model is a PMC with two parameters of the model: (i) B = M

M+N
is the

probability that a Crowd member is untrustworthy, (ii) P is the probability that
a member forwards the package to a random selected receiver. With probability
1 − P it delivers the message to the receiver directly. As property we consider
the probability that the actual sender was observed more than any other one
by the untrustworthy members. For various N and R values, the following table
summarises the time needed for computing the function representing this prob-
ability, with and without the bisimulation optimisation. In the last column we
evaluate the probability for M = N

5 (thus B = 1
6) and P = 0.8. An interesting

observation is that the weak bisimulation quotient has the same size for the same
R, but different probabilities. The reason for this is that the other parameter
N has only affect on the transition probabilities of the quotient and not its un-
derlying graph. In Figure 2 we give the plot for N = 5, R = 7. Observe that
this probability increases with the number of dishonest members M , which is
due to the fact that the dishonest members share their local information. On
the contrary, this probability decreases with P . The reason is that each router
forwards the message randomly with probability P . Thus with increasing P the
probability that the untrustworthy member can identify the real sender is then
decreased.

N R
no bisimulation bisimulation (weak)

Result
States Trans. Time(s) Mem(MB) States Trans. Time(s) Mem(MB)

5 3 1192 2031 6 6 33 62 3 6 0.3129
5 5 8617 14916 73 22 127 257 22 21 0.3840
5 7 37169 64888 1784 84 353 732 234 84 0.4627
10 3 6552 15131 80 18 33 62 16 17 0.2540
10 5 111098 261247 1869 245 127 257 504 245 0.3159
15 3 19192 55911 508 47 33 62 51 47 0.2352

1 − p/1

1/n − 1
sok

1 − q/1
s
−1

q/1
s0 s1

p/1 p/1
s2 . . .

p/1
sn

p/1
serr

1 − p/1 1 − p/1

Zeroconf. Zeroconf allows the installation and operation of a network in the
most simple way. When a new host joins the network, it randomly selects an
address among the K = 65024 possible ones. With m hosts in the network, the
collision probability is q = m

K
. The host asks other hosts whether they are using

this address. If a collision occurs, the host tries to detect this by waiting for an
answer. The probability that the host gets not answer in case of collision is p, in
which case he repeats the question. If after n tries the host got no answer, the
host will erroneously consider the chosen address as valid. A sketch of the model
is depicted in the figure above. We consider the expected number of tries till
either the IP address is selected correctly or erroneously that is, B = {sok, serr}.
For n = 140, the plot of this function is depicted in on the right part of Figure 2.
The expected number of tests till termination increases with both the collision
probability as well as the probability that a collision is not detected. Bisimulation
optimisation was not of any use, as the quotient equals the original model. For
n = 140, the analysis took 64 seconds and 50 MB of memory.

Cyclic Polling Server. The cyclic polling server [16] consists of a number of
N stations which are handled by the polling server. Process i is allowed to send
a job to the server if he owns the token, circulating around the stations in a
round robin manner. This model is a parametric continuous-time Markov chain,
but we can apply our algorithm on the embedded discrete-time PMC, which has
the same probabilistic reachability. We have two parameters: the service rate
µ and γ is the rate to move the token. Both are assumed to be exponentially
distributed. Each station generates a new request with rate λ = µ

N
. Initially the

token is at state 1. We consider the probability (p) that station 1 will be served
before any other one. The following table summarises performance for different
N . The last column corresponds to the evaluation µ = 1, γ = 200.

N
no bisimulation bisimulation (weak)

Result
States Trans. Time(s) Mem(MB) States Trans. Time(s) Mem(MB)

4 89 216 1 3 22 55 1 3 0.25
5 225 624 3 3 32 86 1 3 0.20
6 545 1696 10 4 44 124 3 4 0.17
7 1281 4416 32 5 58 169 7 5 0.14
8 2945 11136 180 7 74 221 19 8 0.12

On the left of Figure 3 a plot for N = 8 is given. We have several interesting
observations. If µ is greater than approximately 1.5, p first decreases and then
increases with γ. The mean time of the token staying in state 1 is 1

γ
. With

increasing γ, it is more probable that the token pasts to the next station before
station 1 sends the request. At some point however (approximated γ = 6), p
increases again as the token moves faster around the stations. For small µ the
probability p is always increasing. The reason for this is that the arrival rate
λ = µ

N
is very small, which means also that the token moves faster. Now we fix

γ to be greater than 6. Then, p decreases with µ, as increasing µ implies also a
larger λ, which means that all other states become more competitive. However,
for small γ we observe that µ increases later again: in this case station 1 has a
higher probability of catching the token initially at this station.

 0.5 1 1.5 2 2.5 3 4
 8

 12
 16

 20
 0.108
 0.112
 0.116
 0.12

 0.124
 0.128

mu
gamma 0 0.2 0.4 0.6 0.8 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 0

 4

 8

 12

p1
p2

Fig. 3. Left: Cyclic Polling Server. Right: Randomised Mutual Exclusion

Randomised Mutual Exclusion. In the randomised mutual exclusion proto-
col [20] several processes try to enter a critical section. We consider the protocol
with two processes i = 1, 2. Process i tries to enter the critical section with pi,
and with probability 1 − pi, it waits until the next possibility to enter and tries
again. The model is a PMRM with parameters pi. The reward with value 1 is
assigned to each transition corresponding to the probabilistic branching pi and
1 − pi. We consider the expected number of coin tosses until one of the pro-
cesses enters the critical section the first time. A plot of the expected number
is given on the right part of Figure 3. This number decreases with both p1 and
p2, because both processes have more chance to enter their critical sections. The
computation took 98 seconds, and 5 MB of memory was used. The model con-
sisted of 77 states and 201 non-zero transitions. In the quotient, there were 71
states and 155 non-zero transitions.

Bounded Retransmission Protocol. In the bounded retransmission protocol,
a file to be sent is divided into a number of N chunks. For each of them, the
number of retransmissions allowed is bounded by MAX. There are two lossy
channels K and L for sending data and acknowledgements respectively. The
model is a PMDP with two parameters pK , pL denoting the reliability of the
channels K and L respectively. We consider the property “The maximum prob-
ability that eventually the sender does not report a successful transmission”. In
the following table we give statistics for several different instantiations of N and
MAX. The column “Nd.Vars” gives the number of variables introduced addi-
tionally to encode the non-deterministic choices. We give only running time if
the optimisation is used. Otherwise, the algorithm does not terminate within
one hour. The last column gives the probability for pK = 0.98 and pL = 0.99, as
the one in the Prism model. We observe that for all instances of N and MAX,
with an increasing reliability of channel K the probability that the sender does
not finally report a successful transmission decreases.

N MAX

model quotient (weak)
Time(s) Mem(MB) Result

States Trans. Nd.Vars States Trans.

64 4 8551 11569 137 643 1282 23 16 1.50E-06
64 5 10253 13922 138 771 1538 28 19 4.48E-08
256 4 33511 45361 521 2563 5122 229 63 6.02E-06
256 5 40205 54626 522 3075 6146 371 69 1.79E-07

Notably, we encode the non-deterministic choices via additional variables, and
apply the algorithm for the resulting parametric MCs. This approach may suffer
from exponential enumerations in the number of these additional variables in
the final rational function. In this case study however, the method works quite
well. This is partly owed to the fact, that after strong and weak bisimulation on
the encoding PMC, the additional variables vanish as illustrated in Example 2.
We are well aware however, that still much work needs to be done to handle
general non-deterministic models.

5 Comparison with Daws’ Method

Our algorithm is based on the state elimination approach, inspired by Daws [8],
who treats the concrete probabilities as an alphabet, and converted the MC into
a finite automaton. Then a regular expression is computed, which is afterwards
evaluated into functions (albeit lacking any implementation). The length of the
resulting regular expression, however, has size Θ(nlog n) [11] where n denotes the
number of states of the finite automaton. Our method instead intertwines these
two steps of state elimination and evaluation. The size of the resulting function
is in worst case still in O(nlog n), thus there is no theoretical gain, pessimistically
speaking.

The differences of our and Daws’ method are thus on the practical side,
where they indeed have dramatic implications. Our method simplifies the ratio-
nal functions in each intermediate step. The worst case for our algorithm can

occur only in case no rational function can be simplified during the entire pro-
cess. In essence, this is the case for models where each edge of the input model
has a distinguished parameter. We consider this a pathological construction. In
all of the interesting models we have seen, only very few parameters appear in
the input model, and it seems natural that a model designer does not deal with
more than a handful of model parameters in one go. For those models, the in-
termediate rational functions can be simplified, leading to a space (and time)
advantage. This is the reason why our method does not suffer from a blow up in
the case studies considered in Section 4. To shed light on the differences between
the two methods, we return to the cyclic polling server example:

Number of workstations 4 5 6 7 8

Length of regular expression 191 645 2294 8463 32011

Number of terms 7 9 11 13 15
Total degree 6 8 10 12 14

In the table above, we compare the two methods in terms of the observed size
requirements. For each number of workstations from 4 to 8, we give the length
of the regular expression arising in Daws method. On the other hand, we give
the number of terms and the total degree of the nominator and denominator
polynomials of the rational function resulting from our method. The numbers
for Daws method are obtained by eliminating the states in the same order as
we did for our method, namely by removing states with a lower distance to the
target set first. For the length of regular expressions, we counted each occur-
rence of a probability as having the length 1, as well as each occurrence of the
choice operator (“+”) and the Kleene star (“*”). We counted braces as well as
concatenation (“·”) as having length zero.

As can be seen, the size of the regular expression grows exponentially, thus
materializing the theoretical complexity. This makes the nice idea of [8] infeasible
in a direct implementation. For our method, both the number of terms as well
as the total degree grow only linearly with the number of workstations.as

6 Conclusion

We have presented algorithms for analysing parametric Markov models, possibly
extended with rewards or non-determinism. As future work, we are investigating
general improvements of the implementation with respect to memory usage and
speed, especially for the setting with non-determinism. We also plan to look
into continuous time models – with clocks. Other possible directions include
the use of symbolic model representations, such as MTBDD-based techniques,
symbolic bisimulation minimisation [22], and also a symbolic variant of the state
elimination algorithm.

All relevant material (tool inputs and outputs) of the case studies is available
at: http://d.cs.uni-sb.de/~zhang/parametric

http://d.cs.uni-sb.de/~zhang/parametric

References

1. J. Abbott. The design of cocoalib. In ICMS, pages 205–215, 2006.
2. C. Baier, F. Ciesinski, and M. Größer. Probmela and verification of markov decision

processes. SIGMETRICS Performance Evaluation Review, 32(4):22–27, 2005.
3. C. Baier and H. Hermanns. Weak Bisimulation for Fully Probabilistic Processes.

In CAV, pages 119–130, 1997.
4. C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. Comparative branching-time

semantics for Markov chains. Inf. Comput., 200(2):149–214, 2005.
5. Bianco and de Alfaro. Model Checking of Probabilistic and Nondeterministic Sys-

tems. FSTTCS, 15, 1995.
6. J. A. Brzozowski and E. Mccluskey. Signal Flow Graph Techniques for Sequential

Circuit State Diagrams. IEEE Trans. on Electronic Computers, EC-12:67–76, 1963.
7. B. Damman, T. Han, and J.-P. Katoen. Regular Expressions for PCTL Counterex-

amples. In QEST, 2008. to appear.
8. C. Daws. Symbolic and Parametric Model Checking of Discrete-Time Markov

Chains. In ICTAC, pages 280–294, 2004.
9. S. Derisavi, H. Hermanns, and W. Sanders. Optimal State-Space Lumping in

Markov Chains. Inf. Process. Lett., 87(6):309–315, 2003.
10. K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra.

Kluwer Academic Publishers, 1992.
11. H. Gruber and J. Johannsen. Optimal Lower Bounds on Regular Expression Size

Using Communication Complexity. In FoSSaCS, pages 273–286, 2008.
12. T. Han, J.-P. Katoen, and A. Mereacre. Approximate Parameter Synthesis for

Probabilistic Time-Bounded Reachability. In RTSS, 2008. to appear.
13. H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reliability.

Formal Aspects of Computing, 6(5):512–535, 1994.
14. A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for

Automatic Verification of Probabilistic Systems. In TACAS, pages 441–444, 2006.
15. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,

languages, and computation, 2nd edition. SIGACT News, 32(1):60–65, 2001.
16. O. Ibe and K. Trivedi. Stochastic Petri Net Models of Polling Systems. IEEE

Journal on Selected Areas in Communications, 8(9):1649–1657, 1990.
17. B. Jonsson and K. G. Larsen. Specification and Refinement of Probabilistic Pro-

cesses. In LICS, pages 266–277. IEEE Computer Society, 1991.
18. M. Z. Kwiatkowska, G. Norman, and D. Parker. Stochastic Model Checking. In

SFM, pages 220–270, 2007.
19. R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Parametric probabilistic transi-

tion systems for system design and analysis. Formal Asp. Comput., 19(1):93–109,
2007.

20. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Distrib.

Comput., 1(1):53–72, 1986.
21. M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions. ACM

Trans. Inf. Syst. Secur., 1(1):66–92, 1998.
22. R. Wimmer, S. Derisavi, and H. Hermanns. Symbolic partition refinement with

dynamic balancing of time and space. In QEST, pages 65–74, 2008.

A Proofs

A.1 Proof of lemma 1

Let D be a PMC and B be a set of target states. Assume that the PMC D and set
of states B satisfy the requirement of Algorithm 1, i.e., state s ∈ B is absorbing.
For all s ∈ S, it holds reach(s0, s) and reach(s,B). We show that the execution of
one loop iteration in lines 2-4 in which a state s is eliminated does not change the
probability of reaching B under any maximal well-defined evaluation function u.
Let PathD(s0,B) = {σ ∈ PathD | first(σ) = s0 ∧ last(σ) ∈ B} denote the set of
paths reaching B. The probability of reaching B can be then expressed by the
sum

PrDu(B) =
∑

σ∈PathD(s0,B)

PrDu(σ)

We fix a evaluation function u. We let D1 = (S1, s0,P1) denote the PMC
before eliminating of the state s ∈ S \B∪{s0}, and let D2 = (S2, s0,P2) denote
the PMC after eliminating of the state s. Assume that u is maximal well-defined
for D1. By construction of the algorithm, it holds that S2 = S1 \ {s}, and that

P2(s1, s2) = P1(s1, s2) +
P1(s1, s)P1(s, s2)

1 − P1(s, s)
(1)

Now it is sufficient to show that

Pr (D1)u(B) = Pr (D2)u(B) (2)

Let σ ∈ PathD1(s0,B) be an arbitrary path in D1. Then, we let ind(σ) ∈
PathD2(s0,B) denote the induced path in D2, which is obtained by eliminating
each occurrence of s in σ. Let σ′ ∈ PathD2(s0,B) be an arbitrary path in D2.
The path σ′ corresponds to a set of paths pre(σ′) in PathD1(s0,B) defined as
follows: pre(σ′) = {σ ∈ PathD1(s0,B) | ind(σ) = σ′}. The relation of σ′ and
pre(σ′) is illustrated in Fig. 4. Obviously, it holds that:

PathD1(s0,B) =
⋃

σ′∈PathD2 (s0,B)

pre(σ′)

Now to show Equation 2, it is sufficient to show that for each σ′ ∈ PathD2(s0,B),
it holds that:

Pr (D1)u(pre(σ′)) = Pr (D2)u(σ′) (3)

Without loss of generality, let σ′ = s0, s1, . . . , sn with sn ∈ B. Before we
show Equation 3, we first introduce some notations. For j = 0, . . . , n − 1 and
ij ∈ N, we define f(sj , j, sj+1) by:

f(sj , ij , sj+1) =

{

P1(sj , sj+1) if ij = 0
P1(sj , s)P1(s, s)

ij−1P1(s, sj+1) if ij > 0
(4)

For the definition of f(sj , ij , sj+1), consider each part . . . sjs
ij sj+1 . . . of the

path s0s
i0s1s

i1 · · · sin−1sn has either the form

P(sn−1, sn) + P(sn−1,s)P(s,sn)
1−P(s,s)

s1 sns0 s

P(s0, s1) P(s1, s2)

P(s0, s) P(s, s1)

P(s, s)

P(s1, s) P(s, s2)

P(sn−1, sn)

. . .s

P(s, s)

s

P(s, s)

P(s, sn)P(sn−1, s)

s0 s1

P(s0, s1) + P(s0,s)P(s,s1)
1−P(s,s)

P(s1, s2) + P(s1,s)P(s,s2)
1−P(s,s)

sn. . .

Fig. 4. Illustration of state elimination proof

1. sjsj+1, that is, no s occurs in between sj and sj+1, or
2. sjs

ij−1sj+1 where ij > 0 that is, there are one or several s in between.

For (1), the transition probability is P1(sj , sj+1), as we have a direct transition
from sj to sj+1 at this point. For (2), we first have a transition from sj to s, then
a number of ij − 1 self-loops in s and then a transition from s to sj+1, leading
to a probability of P1(sj , s)P1(s, s)

ij−1P1(s, sj+1). If sj , sj+1 is clear from the
context, we write simply f(ij). Thus, it holds:

∞
∑

ij=0

f(ij) = P1(sj , sj+1) +
P1(sj , s)P1(s, sj+1)

1 − P1(s, s)
= P2(sj , sj+1) (5)

Now we show Equation 3:

Pr
(D1)u(pre(σ′)) =

∞
X

i0=0

∞
X

i1=0

· · ·

∞
X

in−1=0

Pr
(D1)u

“

s0s
i0s1s

i1 · · · sin−1sn

”

=
∞

X

i0=0

∞
X

i1=0

· · ·
∞

X

in−1=0

n−1
Y

j=0

f(ij)

!

=
∞

X

i0=0

∞
X

i1=0

· · ·
∞

X

in−2=0

n−2
Y

j=0

f(ij)

0

@

∞
X

in−1=0

f(in−1)

1

A

=

∞
X

i0=0

f(i0)

!

∞
X

i1=0

f(i1)

!

· · ·

0

@

∞
X

in−1=0

f(in−1)

1

A

(5)
=

n−1
Y

i=0

P2(si, si+1) = Pr
(D2)u(σ′)

Since u is maximal well-defined, 1−P1(s, s) 6= 0, implying Equation 3. Observe

that u is also maximal well-defined for D2, since reach(D1)u(s1,B) implying also

reach(D2)u(s1,B) for all s1 6∈ B.
After the execution of lines 1-4 the model consists only of the initial state

s0 and the set of target states B. Now we can directly compute the reachability
probability:

Pr(s0,B) =
∞

X

i=0

X

s∈B

P(s0, s0)
i
P(s0, s) =

1

1 − P(s0, s0)
P(s0,B)

A.2 Proof of lemma 2

Let M = (D, r) be a PMRM and B be a set of target states. Assume that the
PMRM M and set of states B satisfy the requirement of Algorithm 2, i.e., state
s ∈ B is absorbing. For all s ∈ S, it holds reach(s0, s) and reach(s,B). We
show that the execution of one loop iteration in lines 2-7 in which a state s is
eliminated does not change the expected reward until B is reached under any
maximal well-defined evaluation function u.

We fix a evaluation function u. We let M1 = (D1, r1), D1 = (S1, s0,P1)
denote the PMC before eliminating of the state s ∈ S \B∪ {s0}, and let M2 =
(D2, r2), D2 = (S2, s0,P2) denote the PMC after eliminating of the state s.
As for PMCs, it holds that S2 = S1 \ {s}, and the matrix P2 is as defined in
Equation 1. For s, s′ ∈ S1, we let r∗1(s, s′) denote the reward r1(s) + r1(s, s

′).
Similarly, for s, s′ ∈ S2, we let r∗r (s, s′) denote the reward r1(s) + r1(s, s

′). We
now discuss how the reward function r2 is obtained in the Algorithm 2. The
reward of a state s ∈ S2 does not change: r2(s) = r1(s). For s1, s2 ∈ S2, let

pe(s1, s2) :=
P1(s1, s)P1(s, s2)

1 − P1(s, s)
(6)

re(s1, s2) := r1(s1, s) + r∗1(s, s2) +
P1(s, s)

1 − P1(s, s)
r∗1(s, s) (7)

r2(s1, s2) :=
pe(s1, s2)re(s1, s2) + P1(s1, s2)r1(s1, s2)

pe(s1, s2) + P1(s1, s2)
(8)

P2(s1, s2) = pe(s1, s2) + P1(s1, s2) (9)

as defined in the algorithm. Note that in case P1(s1, s) = 0, we have pe(s1, s2) =
0 implying that r2(s1, s2) = r1(s1, s2). Assume that u is maximal well-defined
for D1. Now it is sufficient to show that

R(D1)u(s0,B) = R(D2)u(s0,B) (10)

Now with the notation of the proof of lemma 1 to show Equation 10, it is
sufficient to show that for each σ′ ∈ PathD2(s0,B), it holds that:

R(D1)u(pre(σ′)) = R(D2)u(σ′) (11)

where R(σ) = Pr(σ)X(σ) and R(C) =
∑

σ∈C R(σ). Without loss of generality,
let σ′ = s0, s1, . . . , sn with sn ∈ B. Before we show Equation 11, we introduce
some notations. For j = 0, . . . , n − 1 and ij ∈ N, f(sj , j, sj+1) is as defined in
Equation 4. Moreover, g(sj , ij , sj+1) is defined by:

g(sj , ij , sj+1) =

{

r∗1(sj , sj+1) if ij = 0
r∗1(sj , s) + r∗1(s, sj+1) + (ij − 1)(r∗1(s, s)) if ij > 0

(12)

If sj and sj+1 are clear from the context, we write f(ij) and g(ij) instead.
Similar to f(ij), g(ij) denotes the rewards gained via visiting the path segment

. . . sjsj+1 . . . for the case ij = 0, or . . . sjs
ij sj+1 . . . for the case ij > 0. Now we

show Equation 11:

R(D1)u(pre(σ′))

=
∞

X

i0=0

∞
X

i1=0

· · ·
∞

X

in−1=0

Pr
(D1)u

“

s0s
i0s1s

i1 · · · sin−1sn

”

X
“

s0s
i0s1s

i1 · · · sin−1sn

”

=

∞
X

i0=0

∞
X

i1=0

· · ·

∞
X

in−1=0

n−1
Y

j=0

f(ij)

n−1
X

k=0

g(ik)

!

=

n−1
X

k=0

0

@

∞
X

i0=0

∞
X

i1=0

· · ·

∞
X

in−1=0

n−1
Y

j=0

f(ij)g(ik)

1

A

=

n−1
X

k=0

∞
X

i0=0

f(i0)

!

· · ·

0

@

∞
X

ik−1=0

f(ik−1)

1

A

0

@

∞
X

ik=0

f(ik)g(ik)

1

A

0

@

∞
X

ik+1=0

f(ik+1)

1

A · · ·

0

@

∞
X

in−1=0

f(in−1)

1

A

(5)
=

n−1
X

k=0

n−1
Y

i=0

P2(si, si+1) ·

P

∞

ik=0 f(ik)g(ik)

P2(sk, sk+1)

!

=

n−1
Y

i=0

P2(si, si+1)

!

n−1
X

k=0

P

∞

ik=0 f(ik)g(ik)

P2(sk, sk+1)

!

= Pr
(D2)u(σ′)

n−1
X

k=0

P

∞

ik=0 f(ik)g(ik)

P2(sk, sk+1)

!

By definition, we have R(D2)(σ′) = Pr (D2)u(σ′)X(σ′). Recall for path σ′, it

holds that X(σ′) =
∑n−1

k=0 r∗2(sk, sk+1), thus, it is now sufficient to show that for
each k = 0, . . . , n − 1, it holds that:

∞
∑

ik=0

f(ik)g(ik) = P2(sk, sk+1)r
∗
2(sk, sk+1) (13)

Taking the term for ik = 0 to the right side, it is equivalent to show that:

∞
∑

ik=1

f(ik)g(ik) = P2(sk, sk+1)r
∗
2(sk, sk+1) − P1(sk, sk+1)r

∗
1(sk, sk+1) (14)

According to Equation 12,
∑∞

ik=1 f(ik)g(ik) equals to:

(

(r∗1(sk, s) + r∗1(s, sk+1))
∞
∑

ik=1

f(ik)

)

+

(

r∗1(s, s)
∞
∑

ik=1

f(ik)(ik − 1)

)

(15)

By Equation 5 and Equation 6, it holds that:

∞
∑

ik=1

f(ik) = pe(sk, sk+1) (16)

For 0 ≤ pc < 1, the sum
∑∞

i=0 ipi
c can be simplified to pc

(1−pc)2
. Using this,

we can simplify the second sum of Equation 15:

∞
∑

ik=1

f(ik)(ik − 1) = pe(sk, sk+1)
P1(s, s)

1 − P1(s, s)
(17)

Now putting Equations 15,16,17 together with Equation 7, we have:

∞
∑

ik=1

f(ik)g(ik) = (re(sk, sk+1) + r1(sk))pe(sk, sk+1)

(8)
= P2(sk, sk+1)r2(sk, sk+1) − P1(sk, sk+1)r1(sk, sk+1) + r1(sk)pe(sk, sk+1)

(9)
= P2(sk, sk+1)r

∗
2(sk, sk+1) − P1(sk, sk+1)r

∗
1(sk, sk+1)

which proves Equation 14. This means that the expected accumulated reward
till B is reached is equal in the old and the new model. After the execution of
lines 1-7 the remaining paths with non-zero probabilities from the initial states
to B all have a length of 1. Because of this, in line 8 the expected reward can be
obtained directly from the probability matrix P and reward matrix r. As before,
let r∗(s, s′) denote r(s) + r(s, s′). Then,

R(D2)u(s0,B)

=
X

s∈B

∞
X

i=0

P(s0, s0)
i
P(s0, s) (r∗(s0, s) + i · r∗(s0, s0))

=
X

s∈B

P(s0, s)r
∗(s0, s)

∞
X

i=0

P(s0, s0)
i + P(s0, s)r

∗(s0, s0)

∞
X

i=0

i · P(s0, s0)
i

!

=
X

s∈B

„

P(s0, s)r
∗(s0, s)

1 − P(s0, s0)
+

P(s0, s)r
∗(s0, s0)P(s0, s0)

(1 − P(s0, s0))
2

«

The proof to show that no divisions by zero occur is analog to the one in A.1

A.3 Proof of lemma 3

Let M = (S, s0,Act ,P, V) be a PMDP, and let A : S → Act be a stationary
scheduler. We define a stationary evaluation v with

v(vs,a) =

{

0 , A(s) 6= a
1 , A(s) = a

Then we have MA = (enc(M))v. If on the other hand we start with a stationary
evaluation v, we can define a stationary scheduler A by A(s) = a iff

– either v(vs,a) = 1, or
– δ(s) = a and for all vs,b it is v(vs,b) = 0.

Then again we have MA = (enc(M))v.

A.4 Proof of lemma 4

Let M = (S, s0,Act ,P, V) be a PMDP, let u be a strictly well-defined evaluation
for M and let A be a stationary scheduler with

PrMu,A(s0,B) = max
A′∈MD(M)

PrMu,A′

(s0,B) (18)

Without loss of generality, we can assume that the chosen A in the above equa-
tion satisfies the following constraint:

PrMu,A(s,B) = max
A′∈MD(M)

PrMu,A′

(s,B) (19)

for all s ∈ S [5]. Let f be the function returned from applying algorithm 1
on enc(M). Let v : Varδ → {0, 1} be the evaluation from lemma 3. Then v
is the evaluation needed. Applying first u and then v is equivalent to applying
w : V ∪̇Varδ → R with

w(a) =

{

u(a) if a ∈ V
v(a) if a ∈ Varδ

as V and Varδ are disjunctive sets. So, f [V ∪̇Varδ/w] = f [Varδ/v][V/u]. We
show that w is maximal well-defined in enc(M) that is, (1) w is well-defined and

(2) reach(enc(M))w(s,B) for all s ∈ S. For (1), this is clear. For (2), we only have

to show that reach(enc(M))w(s,B) for s ∈ S′ =
{

s ∈ S | reachenc(M)(s,B)
}

,

because states not in S′ will be removed by the preprocessing of the state-
elimination algorithm. Because u is strictly well-defined, it is reach(enc(M))u(s,B)

if s ∈ S′. That means that there is a v′ with Pr ((enc(M))u)v′ (s,B) > 0. This

means that there is a scheduler A′ with Pr (MA′)u(s,B) > 0. Because of 19,

it follows that Pr (MA)u(s,B) > 0. Due to the definition of v, this also means

Pr ((enc(M))u)v (s,B) > 0 and in turn Pr (enc(M))w(s,B) > 0, which is equivalent

to reach(enc(M))w(s,B).
Now we have:

f [Varδ/v][V/u] = f [V ∪̇Varδ/w]
Lem.1

= Pr enc(M)w(s0,B)

= Pr((enc(M))v)u(s0,B)
Lem.3

= PrMu,A(s0,B)

(18)
= max

A′∈MD(M)
PrMu,A′

(s0,B)

A.5 Proof of lemma 5

First we prove: s1 ∼D s2 ⇒ s1 ∼Du
s2 for all well-defined evaluations u.

Proof. If s1 ∼ s2 then there exists a strong bisimulation R with s1Rs2. Obviously
R is also a bisimulation in Du: for s′1Rs′2 and C ∈ S/R, we have: P(s′1, C) =
P(s′2, C) implies Pu(s′1, C) = Pu(s′2, C).

Now we prove: s1 ≈D s2 ⇒ s1 ≈Du
s2 for all maximal well-defined evalua-

tions u.

Proof. If s1 ≈ s2 then there exists a weak bisimulation R with s1Rs2. Moreover,
for s′1Rs′2 it holds:

1. s′1 ∈ B iff s′2 ∈ B

2. if P(s′i, [s
′
i]R) 6= 1 for i = 1, 2 then it is

P(s′

1,C)
1−P(s′

1,[s′

1]R) =
P(s′

2,C)
1−P(s′

2,[s′

2]R) for all

C ∈ S/R if s′1Rs′2, and
3. s′1 can reach a state outside [s′1] iff s′2 can also in GD.

We show that R is also a bisimulation Du. For (1), this is clear. For (2), assume
that Pu(s′i, [s

′
i]R) < 1 for i = 1, 2. In this case, we must have P(s′i, [s

′
i]R) 6= 1 and

thus
P(s′

1,C)
1−P(s′

1,[s′

1]R) =
P(s′

2,C)
1−P(s′

2,[s′

2]R) which implies
Pu(s′

1,C)
1−Pu(s′

1,[s′

1]R) =
Pu(s′

2,C)
1−Pu(s′

2,[s′

2]R) .

For (3) we notice that in maximal well-defined evaluations we always can reach
B from states not in B in GDu

.

vs1,a = 0

1 − vs1,a

1
2

s0

Original Model

1
2

vs1,a

1

s4

s2

s4s0

1

maximal evaluation

s1

1
2

s0 1
2

1

s4

s2

s1

1

In the figure above, it is illustrated why weak bisimulation is only valid for
maximal evaluations. The computed partitioning with respect to weak bisimu-
lation is S/R = {{s0, s1, s2}, {s4}}. This is correct with respect to any maximal
well-defined valuation u: since u(vs1,a) > 0 implying both s1 and s2 can reach
B. The quotient automaton is depicted in the middle of the figure.

Now consider the evaluation function u′ with u′(vs1,a). Obviously u′ is not
maximal well-defined, as state s1 can not reach B. For this evaluation no states
are weak bisimilar, thus the quotient is the same as the original automaton
(depicted on the right).

	Probabilistic Reachability for Parametric Markov Models
	Ernst Moritz Hahn, Holger Hermanns and Lijun Zhang

