Int J Softw Tools Technol Transfer
DOI 10.1007/s10009-010-0146-x

SPIN 09

Probabilistic reachability for parametric Markov models

Ernst Moritz Hahn - Holger Hermanns - Lijun Zhang

© Springer-Verlag 2010

Abstract Given a parametric Markov model, we consider
the problem of computing the rational function expressing
the probability of reaching a given set of states. To attack
this principal problem, Daws has suggested to first convert
the Markov chain into a finite automaton, from which a reg-
ular expression is computed. Afterwards, this expression is
evaluated to a closed form function representing the reach-
ability probability. This paper investigates how this idea can
be turned into an effective procedure. It turns out that the
bottleneck lies in the growth of the regular expression rela-
tive to the number of states (n©(1°8")). We therefore proceed
differently, by tightly intertwining the regular expression
computation with its evaluation. This allows us to arrive at
an effective method that avoids this blow up in most practi-
cal cases. We give a detailed account of the approach, also
extending to parametric models with rewards and with non-
determinism. Experimental evidence is provided, illustrat-
ing that our implementation provides meaningful insights on
non-trivial models.

Keywords Parametric model analysis - Markov chains -
Model checking - Reachability

Part of this work was done while L. Zhang was at Saarland University
and Oxford University.

E. M. Hahn (<) - H. Hermanns
Saarland University, Saarbriicken, Germany
e-mail: emh@cs.uni-sb.de

H. Hermanns
INRIA Grenoble, Rhone-Alpes, France

L. Zhang

DTU Informatics, Technical University of Denmark,
Copenhagen, Denmark

Published online: 07 April 2010

1 Introduction

Markov processes have been applied successfully to reason
about quantitative properties in a large number of areas such
as computer science, engineering, mathematics, biological
systems. This paper is about parametric Markov processes.
In this model class certain aspects are not fixed, but depend
on parameters of the model. As an example, consider a com-
munication network with a lossy channel, where whenever
a package is sent, it is received with probability x but lost
with probability 1 — x. Such a network can be specified in a
probabilistic variation of the PROMELA language [2] or in the
language of the PRISM [19] model checker. In this context,
we might aim, for instance, at determining the parametric
reachability probability, i.e., the probability to reach a given
set of target states. This probability is a rational function
in x.

For (discrete-time) Markov chains (MCs), Daws [10] has
devised a language-theoretic approach to solve this problem.
In this approach, the transition probabilities are considered
as letters of an alphabet. Thus, the model can be viewed as
a finite automaton. Then, based on the state elimination [20]
method, the regular expression describing the language of
such an automaton is calculated. In a post-processing step,
this regular expression is recursively evaluated, resulting in a
rational function over the parameters of the model. Recently,
Gruber and Johannsen [14] have shown, however, that the
size of the regular expression of a finite automaton explodes:
it is n©0°¢" where n is the number of states.

This excessive growth is not only a theoretical insight, but
also a very practical problem, as we will discuss. The goal
of this paper is to nevertheless present an efficient and effec-
tive algorithm for parametric Markov models. Apart from
Markov chains, we also consider extensions with rewards or
non-determinism.

@ Springer

E. M. Hahn et al.

Our method core is also rooted in the state elimina-
tion algorithm. The key difference to the method used by
Daws [10] is that instead of post-processing a (possibly pro-
hibitively large) regular expression, we intertwine the state
elimination and the computation of the rational function.
More precisely, in a state elimination step, we do not use
regular expressions to label edges, but label the edges directly
with the appropriate rational function representing the flow of
probabilities. This also means that we do not work on a finite
automaton representation, but instead stay in the domain of
MC:s all along the process.

We obtain the rational functions in a way inspired by the
evaluation put forward by Daws [10]. But since we do this as
early as possible, we can exploit symmetries, cancellations
and simplifications of arithmetic expressions, especially if
most of the transition probabilities of the input model are con-
stants. In practice, this induces drastic savings in the size of
the intermediate rational function representations, and hence,
is the key to an efficient implementation, as experimental evi-
dence shows.

We apply this idea to parametric Markov reward models
(PMRMs), in which states and transitions are additionally
equipped with reward structures, and these reward struc-
tures are possibly parametric. We discuss how to compute
the expected accumulated reward with respect to a set of
target states B. Intuitively, this amounts to the sum of proba-
bilities of paths leading to B, each weighted with the reward
accumulated along this path. A direct extension of the state
elimination approach does not work for PMRMs, as in the
final regular expression the probability of individual paths
leading to B is lost. Surprisingly, our modified approach for
parametric MCs can be extended in a straightforward way
to handle reward models. Each time we eliminate a state,
the transition probabilities are updated as for the underlying
parametric MCs. Notably, we update the reward function
corresponding to the weighted sum representing the local
expected accumulated rewards.

To round off the applicability of our method, we pres-
ent an extension which can tackle parametric Markov deci-
sion processes (MDPs), models which involve both probabi-
listic and non-determinism choices. Here, we are interested
in the maximum probability of reaching a given set of tar-
get states. In order to answer this question, we encode the
non-deterministic choices via additional binary parameters,
which induce a parametric MC. This modified model is then
submitted to the dedicated algorithm for parametric MCs.

In most settings, we reduce the state space prior to state
elimination, by extending standard strong [11] and weak bi-
simulation [3] lumping techniques (computing the quotient
model for further analysis) to parametric MCs. A very impor-
tant observation is that for parametric MDPs we can apply
the lumping on the encoded parametric MC, since this pre-
serves the maximum reachability probability. This allows us

@ Springer

to minimise parametric MDPs efficiently. We have imple-
mented the algorithms in our tool PARAM [15], including the
parametric bisimulation lumping. We illustrate the feasibility
of the entire approach on a number of non-trivial parametric
MCs, MRMs and MDPs.

Organisation of the paper. In Sect. 2 we introduce the
parametric models used in this paper. Then, in Sect. 3, we
present our main algorithms for parametric models and dis-
cuss bisimulation minimisation for parametric models and
the complexity of our algorithms. We provide experimen-
tal results in Sect. 4. In Sect. 5, we compare our method to
the original approach of Daws. Related work is discussed in
Sect. 6. Finally, Sect. 7 concludes this paper.

2 Parametric models

In this section, we present the parametric models which we
will use throughout the paper. First, we introduce some gen-
eral notations. Let S be a finite set. We let V. = {x|, ..., x,}
denote a set of variables with domain R. An evaluation u
is a partial function # : V — R. We let Dom(u) denote
the domain of u. We say that u is total if Dom(u) = V. A
polynomial g over V is a sum of monomials

_ E R i
glxt, ..., xp) = iy, oigX] Xy
i1,

..... in

where each i; € Ng and each ;.. ;, € R. A rational func-
tion f over a set of variables V is a fraction f(x1,...,x,) =
% of two polynomials fi, f» over V. Let Fy denote
the set of rational functions from V to R. Given f € Fy, a
set of variables X C V, and an evaluation u, we let f[X/u]
denote the rational function obtained by substituting each

occurrence of x € X N Dom(u) with u(x).

Definition 1 A parametric Markov chain (PMC) is a tuple
D = (S8, s0, P, V) where S is a finite set of states, sg is the
initial state, V = {vy, ..., v,} is a finite set of parameters
and P is the probability matrix P : § x S — Fy.

PMCs have already been introduced in previous publica-
tions [10,27]. We now define the underlying graph of a PMC.

Definition 2 The underlying graph Gp of a PMC D
(S, 50, P, V) is defined as Gp = (S, Ep) where Ep =
{(s, s | P(s,s") # 0}.

We omit the subscript D if it is clear from the context.
Based on the above definition, we introduce some more nota-
tions. Fors € S, weletpre(s) = {s’ | (s/,s) € E}denote the
set of predecessors of s, and let post(s) = {s’ | (s,s") € E}
denote the set of successors of s. We say that s’ is reachable
from s, denoted by reach¥P (s, s"),if s” is reachable from s in
the underlying graph Gp.For A C §, we write reach9? (s, A)

Parametric probabilistic reachability

if reach9? (s, s") for any s’ € A. We omit the superscript Gp
if it is clear from the context. Now we define the induced
PMC with respect to an evaluation:

Definition 3 Let D = (S, sg, P, V) be a PMC. The PMC
D, induced by an evaluation u is defined as D, =
(S, so, Py, V\Dom(u)) where the transition matrix P, : § x
S — Fy\Dom(u) is givenby P, (s, s") = P(s, s")[Dom(u) /u].

We introduce the notion of well-defined evaluations. A
total evaluation u is well defined for D if P, (s, s’) € [0, 1]
forall s, 5" € S, and P, (s, S) € [0, 1] for all s € S where
P, (s, S) denotes the sum >, ¢Py(s, s). Intuitively, u is
well defined if and only if the resulting PMC D, is then an
ordinary MC without parameters. For a well-defined evalua-
tion, state s is called stochastic if P, (s, S) = 1, sub-stochas-
ticif P,(s, S) < 1.If P, (s, §) = 0, s is called absorbing.

Let u be a well-defined evaluation, and consider the
underlying graphs Gp = (S, Ep) and Gp, = (S, Ep,).
Obviously, it holds that Ep, € Ep. We say that the total
evaluation function u is strictly well defined if the equality
holds, i.e., Ep, = Ep. Intuitively, a strictly well-defined
evaluation does not destroy the reachability property of the
underlying graph. This implies that any edge with function
f evaluates to a non-zero probability. As probabilities often
correspond to failure probabilities, we often do not need to
consider non-strictly well-defined evaluations; we are usually
not interested in considering that the probability of a failure
is O or, on the other hand, that the probability of success is 0.

An infinite path is an infinite sequence o = sps1s2 ... of
states, and a finite path is a finite sequence o = s¢s152 ... Sy
of states. A finite path o = 595152 ... s, has length |o| = n.
Let first(o) = so denote the first state, and last(c) = s,
denote the last state (for a finite path). A maximal path is
either an infinite path or a finite path o such that last(o) is
absorbing. With o[i] we denote the ith state of o (starting
at 0). Let Path? denote the set of maximal paths of D and
Pathéjn the set of finite paths. Let Path? (s) (Pathg1 (s)) be the
set of maximal (finite) paths starting in s. For a finite path o,
we define a rational function PrP (o) € Fy by

lo|—1

PrP(o) = [] P(olil.oli + 1)).

i=0

For aset of paths C C Path%)n such that there arenoo, o’ € C
where o is a prefix of ¢/, let PrP(C) = D sec PrP (o).
The function PrP can be uniquely extended to the set of
paths Path? . For a well-defined evaluation u, prP (o)[V /u]
is exactly the probability of the path o in D,,, and PrP« is
the uniquely defined probability measure [31] over the set of
paths Path? given a fixed initial state so. We omit the super-
script D if it is clear from the context. Now we consider the
extension of PMCs with rewards:

Definition 4 A Parametric Markov Reward Model (PMRM)
isatuple R = (D, r) where D = (S, so, P, V) is aPMC and
r:(SU(S x S)) - Fy is the reward function.

Intuitively, for states s, s’ € S, r(s) is the reward gained
by visiting s, and r(s, s’) denotes the reward gained if the
transition from s to s’ is taken. Both 7 (s) and r (s, s’) are ratio-
nal functions over V. As for PMCs, we define the induced
PMRM.

Definition 5 Let R = (D, r) be a PMRM. The PMRM R,
induced by an evaluation u is defined as R, = (D,,, r,). Here
D,, is defined as in Definition 3. For s € S and (s1, 52) €
S x s we define r,(s) = r(s)[Dom(u)/u] and r,(s1, s2) =
r(s1, s2)[Dom(u)/u].

The evaluation u is well defined and strictly well defined
for R iff it is well defined and strictly well defined for D,
respectively. We will also use paths as well as the underlying
graph of R = (D, r) without referring to D explicitly.
Finally, we consider parametric Markov decision processes
which are extensions of PMCs with non-deterministic
decisions:

Definition 6 A parametric Markov decision process
(PMDP)is atuple M = (S, sg, Act, P, V) where S, sg and V
are as for PMCs, and Act is a finite set of actions. The transi-
tion probability matrix P is a function P : S xAct xS — Fy.

As for PMCs, we introduce the PMDP induced by a valuation
function:

Definition 7 Given a PMDP M = (S, so, Act, P, V) and an
evaluation u, the PMDP induced by u is defined by M, =
(S, so,Act, Py, V\Dom(u)) where P, : § x Act x § —
]:V\Dom(u) is defined by

P,(s,a,s") =P(s,a,s) [Dom(u)/u]

With Act(s) = {a | 3s’ € S. P(s,a,s’) # 0} we specify
the set of enabled actions of a state. An infinite path of M
is an infinite sequence o = sgapsiaj . . ., and a finite path is
a finite sequence o = spaps1d; . . .S,. The notations maxi-
mal path, o [i], Path™ R Path{-l\f R Path™ (s)and Path{-]\f (s) are
defined in a similar way as for PMCs. The non-deterministic
choices are resolved by the notion of schedulers. A scheduler
is a function

A: Pathé\;l (s0) — Act

satisfying that for o € Pathg\;l (s0), A(oc) = a implies a €
Act(last(o)). We say that A is stationary (or called memory-
less in the literature) if A depends only on the last state, i.e.,
A is a function A : § — Act. With MD(M) we denote the
set of stationary schedulers of M. A stationary scheduler
induces a PMC as follows:

@ Springer

E. M. Hahn et al.

Definition 8 Given a PMDP M = (S, sg, Act,P, V) and a
stationary scheduler A, the PMC induced by A is defined
as My = (S, 59, Pa, V) where the transition matrix Py :
S x § — Fy is defined by P4 (s, s') = P(s, A(s), s').

A total evaluation u is called strictly well defined for M if
for each stationary scheduler A € MD(M), u is strictly well
defined for M 4. For strictly well-defined evaluation u, let
Pr™Mu-4 denote the probability measure in the PMC (M 4),,.

2.1 Bisimulation relations

A bisimulation is an equivalence relation on states which
subsumes states satisfying the same reachability probability
properties. Now we extend the standard strong [11,23] and
weak bisimulation [3,4] relations for Markov models to our
parametric setting in an obvious way.

Definition 9 Let D = (S, s9, P, V) be a PMC and R be an
equivalence relation on S. R is a strong bisimulation on D
with respect to B if for all s Rs; it holds s1 € B iff s, € B,
and for all C € S§/R itholds P(s1, C) = P(s2, C).

States s1 and s> are strongly bisimilar, denoted s; ~p 52
iff there exists a strong bisimulation R on D. Note that we
have operations on functions in the definition, instead of
numbers. Strong bisimulation can be extended for PMRMs
without transition rewards by additionally requiring that
r(sy) = r(sp) for all C € S/R if s1Rsy. Now we give the
notion of weak bisimulation:

Definition 10 Let D = (S, sg, P, V) be a PMC and R be an
equivalence relation on S. Let B be a set of target states. R is
a weak bisimulation on D with respect to B if for all 51 Rs>
s1 € Biff s, € B, and

1. IfP(si, [silg) # 1 fori = 1,2 then for all C € S/R,
C # [s1lr = [s21r:

P(s;1.C) P50
1—P(s1, [s1]r) 1 —P(s2, [52]8)°

2. s1 can reach a state outside [s1]g iff s can reach a state
outside [s2]g.

We say that states s1 and so are weakly bisimilar, denoted
s1 ~p s iff there exists a weak bisimulation R on D. Weak
bisimulation is strictly coarser than strong bisimulation. To
the best of our knowledge, weak bisimulation has not been
introduced for Markov reward models. The largest (strong or
weak) bisimulation equivalence allows us to obtain the quo-
tient, which is the smallest model bisimilar to the original
model. As the reachability properties are preserved under
bisimulations, we can work with the quotient instead of the
original model.

@ Springer

3 Algorithms

In this section we first present an algorithm for the reach-
ability probability for PMCs. Then, we extend our algorithm
to PMRMs and PMDPs in Sects. 3.2 and 3.3, respectively.
In Sect. 3.4, we discuss how to minimise parametric mod-
els using bisimulation, and we discuss the complexity of our
algorithm in Sect. 3.5.

3.1 Parametric MCs

Let D be a PMC and let B be a set of target states. We are
interested in the parametric reachability probability, i.e., the
function representing the probability to reach a set of tar-
get states B from s, for all well-defined evaluations. This is
defined by

PrP({o € Path? | 6[0] = so A Ji.o[i] € B).

Daws [10] has already solved this problem as follows:
first, the PMC is transformed into a finite automaton, with the
same initial state, and B as the final states. Transition prob-
abilities are described by symbols from an alphabet of the
automaton of the form £ or x representing rational numbers,
or variables. Afterwards, based on the state elimination [20]
method, the regular expression describing the language of
such an automaton is calculated. Then, these regular expres-
sions are evaluated into rational functions representing the
probability to finally reach the target states. However, this
approach can become very costly, as the length of a regular
expression obtained from an automaton is p©logn) [14].

In this section, we present an improved algorithm in which
state elimination and the computation of rational functions
are intertwined. As we do not compute the regular expres-
sions as an intermediate step anymore, this allows for a more
efficient implementation. The reason is that the rational func-
tions can be simplified during the state elimination steps, thus
avoiding the blowup of regular expressions.

The algorithm is presented in Algorithm 1. The input is a
PMC D and a set of target states B. Since we are interested
in the reachability probability, w.l.o.g., we can make the tar-
get states absorbing, and remove states (and corresponding
edges) not reachable from sg, or which cannot reach B a pri-
ori. We note that removing states could induce sub-stochastic
states. A usual search algorithm is sufficient for this prepa-
ration. In the algorithm 4, —, etc. are operations for rational
functions, and exact arithmetic is used to avoid numerical
problems. The key idea of the algorithm is to eliminate states
from the PMC one by one, while maintaining the reachability
probability. The elimination of a single state s & {so} U B is
illustrated in Fig. 1. The labels represent the corresponding
transition probabilities. The function eliminate(s) eliminates
state s from D. When eliminating s, we consider all pairs
(s1,52) € pre(s) x post(s). After eliminating s, the new

Parametric probabilistic reachability

Algorithm 1 Parametric Reachability Probability for PMCs

Require: PMC D = (S, 59, P, V) and the set of target states B. State s € B is absorbing. For all s € S, it holds reach(sg, s) and reach(s, B).

1: for all s € S\ ({so} UB) do

2: for all (sq, s2) € pre(s) X post(s) do

3 P(si,) =Pls1,) + P51, 9) mp PG5, 52)
4: eliminate(s)

5: return mmso, B)

Pd
NG NG
1
Pa1=,;Pb + Pd

Fig. 1 State elimination for PMCs

transition probability from s; to s becomes f(sy,s2) =
pd + %. The second term i’; > of f(s1,52) is the geo-
metric sum >°% papLpp = fi‘; >, which corresponds to the
probability of reaching s, from s through s.

We now discuss the correctness of our algorithm. Con-
sider the simple PMC in Fig. 1. Assume that we have
V = {pa, Pb, Pc, pa}- For strictly well-defined evaluation,
our computed rational function f (s, s3) is correct, which
can be seen as follows. If u is strictly well defined, we have
that Ep = Ep,, implying that u(p.) > 0, u(pp) > 0 and
u(pe) +u(pp) < 1. This indicates also that the denominator
1—u(p.)is not zero. Obviously, for a well-defined evaluation
uwithu(p.) = 1,ourresult f(s1, s2) isnotdefined atall. The
problem is that state s cannot reach s> in Gp, any more. Now
consider another well-defined (but not strictly well-defined)
evaluation u satisfying u(p.) = 0 and u(pp) = 1. It is easy
to check that f(s1, s2) returns the right result in this case. We
introduce the notion of maximal well-defined evaluations for
this purpose:

Definition 11 Assume that the PMC D and the set of states
B satisfy the requirement of Algorithm 1. The total evalua-
tion u is maximal well defined, if it is well defined, and if for
each s € S it holds that reachP« (s, B).

This means that under maximal well-defined evaluations
we can still reach the set of target states from all states of
the model after inserting values into the parametric model
according to the evaluation. This does not mean that the
reachability probability is 1, because we allow sub-stochastic
models. Now we give the correctness of Algorithm 1.

Lemma 1 Assume that the PMC D and the set of states B
satisfy the requirement of Algorithm 1. Assume that the algo-
rithm returns f € Fy. Then, for maximal well-defined eval-
uation u it holds that PrPu (so, B) = f[V/ul.

The detailed induction-based proof can be found in
Appendix A.1. We can handle non-maximal evaluations
by reducing them to maximal evaluations. The details are
skipped here.

3.2 Parametric MRMs

Let R = (D, r) be a PMRM with D = (S, 5o, P, V). Let
B C S be a set of target states. We are interested in the para-
metric expected accumulated reward [26] until B is reach.
We denote this value by R (s, B). Formally, R®(sp,B) is
the expectation of the random variable

xR0 e PathD(so) — Rx>o

which is defined by X R (o) equals O if first(o) € B, oo if
oi] ¢ B for all i, and otherwise, equals

min{j|o[jleB}-1

> r@lih+rliloli + 1.

i=0

In Algorithm 2, we extend the algorithm for PMCs to

handle PMRMs. The input model is a PMRM R = (D, r)
where we have the same requirement of D as Algorithm 1
plus the assumption that the set of target states is reached with
probability 1 (can be checked by Algorithm 1) for the eval-
uations under consideration. We discuss briefly how other
special cases can be dealt with by means of simple search
algorithms. As for PMCs, states not reachable from sy need
not be considered. Assume that there exists a state s satis-
fying the property that reach(so, s) and that —reach(s, B).
By definition, any path o containing s would have infinite
reward, which implies also that RR(so, B) = oo. Assume
that D satisfies the requirement of the algorithm. In this case
we have

RR(s0.B) = > PrP(0) - X% (o)
o

where o ranges over all maximal paths of D. The key part
of the algorithm is the adaption of the state elimination algo-
rithm for R. Consider the pair (s1, s2) € pre(s) Xpost(s). The
core is how to obtain the transition reward for the new tran-
sition (sg, s7) after eliminating s. Consider Fig. 2, where the
label p/r of the edge (s, s”) denotes the transition probability
and the transition reward of the transition, respectively. We
construct the transition from s to s in two steps. In the first

@ Springer

E. M. Hahn et al.

Algorithm 2 Parametric Expected Reward for PMRM

Require: PMRM R = (D, r) with D = (S, 59, P, V), the set of target states B. State s € B is absorbing. For all s € §, it holds that reach(so, s)

and for all maximal well-defined evaluations u it is PrP«(s, B) = 1
for all s € S\({so} UB) do
for all (s1, s2) € pre(s) x post(s) do
Pe =P(s1.9) Tpi5; P (s, 52)
P(s,s)

1:
2
3
4: re =1(s1,8) +r(s,s2) +r(s) + T=P6s.) (r(s,s)+r(s))
5
6
7

o) — DeretP(si52)r(s1,52)
r(s1,82) = Sy
P(s1, 52) = P(s1, 52) + pe

eliminate(s)

8: return 3 _p | ow0-t)

(1-P(s50.50))%

[B (50 + 7G50, 9)) + BOOPER - (1 (50, 50) + 7 (s0))

Pe/Te

O Do

pd/Td

V Pe/Te

Pd/Td

V(e +pa) / (22

Fig. 2 For parametric MRMs in which we have p, = £¢£&

I-pc~>
Ta +7p+ 75 + lfrpt_ (re +15)

andr, =

step we assume that P(sy, s2) = 0 (pg = 0 in the figure). As
for PMCs, after removing s, the probability of moving from
51 to sp is the infinite sum f(s1, $2) := Yoo PaPiPb =
%. Strictly according to our definition, the expected accu-
mulated rewards would be

o0
8(s1,52) 1= D (paplpp) - (ra + 15 + (re +75)i +7p)

i=0
PaDb — .
= (rq +rs +Vb)1 2 D + Papp(re —{—rS)Ziplc
TP i=0
The sum > 22 ip’ can be simplified to (lfﬁ. Then, we
would take the function r, := % for the new reward
from (s1, s2). It can be simplified to
Pe (re +71s).

rezra+r;,+rs+1_

C
This reward can be understood as follows: the sum r, +rp+r;
corresponds to the rewards via visiting s and taking transi-

tions (s1, s) and (s, s2). The term ; 2 ; - can be interpreted as

@ Springer

the expected number of times that the self-loop of s is taken;
thus the second part is obtained by multiplying it with the
rewards r. 4 r, of a single loop.

Now we take account of the case P(s1, s2) > 0. The prob-
ability becomes then p, + pys where p, = fﬁ‘; > and py =
P(s1, s2). A similar analysis as above allows us to get the
reward %. Now we give the correctness of the algo-
rithm for the expected reward, the proof of which can be

found in Appendix A.2.

Lemma 2 Assume that the PMRM R = (D, r) and B satisfy
the requirement of Algorithm 2. Assume that the algorithm
returns f € Fy. Let u be a maximal well-defined evaluation.
Then, it holds that R (so, B) = f[V /u).

3.3 Parametric MDPs

Let M = (S, sg, Act,P, V) be aPMDP and let B C S be a
set of target states. Our goal in this section is to compute the
maximum reachability probability of B in M with respect to
all schedulers. Formally, we want to compute the maximum
max 4 PrMe-A(so, B) for each strictly well-defined evalua-
tion u, with A ranging over all schedulers. For the ordinary
MDP case (e.g. M,, where u is strictly well defined), it has
been shown [5] that the class of stationary schedulers is suf-
ficient to achieve this maximum reachability probability. For
PMDPs, different stationary schedulers are needed for dif-
ferent evaluations:

Example 1 Consider the PMDP

M = ({s0, 51, 52}, 50, {a, b}, P, {x})

where P is defined by: P(so.a,s1) = P(so,a,5) = 1,

P(so, b, s1) = x, P(so, b, s2) = 1 — x. Let B = {s1}. Obvi-
ously, for x < % taking decision a we get the maximum
reachability probability % Moreover, for x > % we get the

maximum reachability probability x with decision b.

We introduce binary variables to encode non-deterministic
choices in PMDPs, as anticipated by Daws [10]. For state
s € S with a number of kK = |Act(s)| non-deterministic
choices, we need to introduce k — 1 variables.

Parametric probabilistic reachability

Definition 12 Let s € S with |Act(s)| > 1. Let §(s) €
Act(s) be an arbitrary selected action. Then, for each a €
Act(s) and a # §(s), we introduce a binary variable vy 4,
denoted by enc(s, a), to encode the transition from s when
choosing a. The transition with respect to 8 (s) is encoded via

enc(s,8(s)) :=1— Z Vs.b-

beAct(s),b#5(s)

In the following, we fix § as defined above and let
Vars denote the set of these variables, all of which have
domain {0, 1}. Intuitively, vs, =1 indicates that the tran-
sition labelled with a is taken from s, whereas vs , =0 for
all vs , witha # ¢ indicates that 6 (s) is taken. Now we define
the encoding of M with respect to Vars.

Definition 13 Let M = (S, sg, Act, P, V) be a PMDP. The
encoding PMC with respect to Vars is defined as enc(M) =
(S, 50, Ps, VUVar,;) where

Ps(s,s') = Z P(s, a,s’) -enc(s, a).

acAct

To avoid confusion, we use v : Vars — {0, 1} to denote
a total evaluation function for Vars. We say v is stationary,
if for each s with |Act(s)| > 1, there exists at most one
a € Act(s)\{8(s)} with v(vs ,) = 1. We let SEx denote the
set of stationary evaluations v with domain Dom(v) = X,
and let SE := SEy;,,. Observe that if v(vs) = O0foralla €
Act(s)\{6(s)}, the transition labelled with §(s) is selected.

We can apply Algorithm 1 on the encoding PMC to com-
pute the parametric reachability probability. In the following,
we discuss how to transform the result achieved this way
back to the maximum reachability probability for the origi-
nal PMDPs. The following lemma states that each stationary
scheduler corresponds to a stationary evaluation with respect
to Vars:

Lemma 3 Let M = (S, sg, Act,P, V) be a PMDP. Then
for each stationary scheduler A there is a stationary evalu-
ation v € SE such that M4 = (enc(M)),. Moreover, for

each stationary evaluation v € SE there exists a stationary
scheduler A such that (enc(M)), = Ma.

Proof Let M = (S, 5o, Act, P, V) be a PMDP, and let A :
S — Act be a stationary scheduler. We define a stationary
evaluation v with

_ 0, A(s)#a
v(Vs,a) = I AG) =a

Then we have M4 = (enc(M)),. If, on the other hand, we
start with a stationary evaluation v, we can define a stationary
scheduler A by A(s) = a iff

e cither v(vs,) = 1, 0r

e §(s) = a and for all vy it is v(vs,p) = 0.

Then again we have M 4 = (enc(M)),. O

Because stationary schedulers are sufficient for maximum
reachability probabilities, the above lemma suggests that for
a strictly well-defined evaluation u of M, it holds that

max

PrMuA sy, B) = max PreeMu) (50 B).
AeMD(M) veSE

Together with Lemma 1, the following lemma discusses the
computation of this maximum:

Lemma 4 Let M = (S, so,Act, P, V) bea PMDP and let f
be the function obtained by applying Algorithm 1 on enc(M).
Let Var ¢ denote the set of variables occurring in f. Then for
each strictly well-defined evaluation u of M, it holds that

max PrMed(sy, B) = flVars/vI[V /ul.

AeMD(M)

max
UESEVaraﬁVarf

Proof Let M = (S, s9,Act,P, V) be a PMDP, let u be a
strictly well-defined evaluation for M and let A be a station-
ary scheduler with

max

M, A
Privte? (5o, B 1
A’eMD(M) (0) ()

prMed (s, B) =
Without loss of generality, we can assume that the chosen A
in the above equation satisfies the following constraint:

PVML“A(S, B) — max PrMu,A’ (S, B) (2)

A'eMD(M)

for all s € S instead of just the initial state [5]. Let f be the
function returned from applying Algorithm 1 on enc(M).
Let v : Vars — {0, 1} be the evaluation from Lemma 3.
Then v is the evaluation needed. Applying first # and then v
is equivalent to applying w : VUVars — R with

u(a) ifaeV
w(a) =

v(a)
as V and Vars are disjunctive sets. So, f[VOVarg/w] =
f[Vars/v][V /u]. We show that w is maximal well defined
in enc(M) that is

ifa € Vars

1. w is well defined, and
2. reach®MDw(g B)foralls € S.

For (1), this is clear. For (2), let

S = {s € S | reach®™M s, B)].

We only have to show that reach®@<Mv (s B) for state
s € S, because states not in S will be removed by the
preprocessing of the state-elimination algorithm. As u is
strictly well defined, reach®© <M (s, B) for s € S'. Thus,
there is a v/ with Pr(EcM)wy (s B) > 0. This means

@ Springer

E. M. Hahn et al.

there is a scheduler A’ with PrManu (s, B) > 0. Because
of Eq. 2, it follows that PrMau (s,B) > 0. Due to the
definition of v, this also means Pr(€cM)uv (s B) > 0
and in turn PrEcMw (s B) > 0, which is equivalent to
reach©<Mv (5 B).

Now we have

f[Vars/vl[V /ul= FIVOVars jw] 2! prencMu (g B)

= prlencM), (0 BY X3 pMuA (g B)

Eq. (1)

max PrMeA’ (s0, B).

A’'eMD(M)

O

In worst case, we have SEmeVarf = SE.Thesize |SE| =
[1;es |Act(s)| grows exponential in the number of states s
with |Act(s) > 1].

3.4 Bisimulation minimisation for parametric models

We discuss how to apply bisimulation strategy to reduce the
state space before our main algorithm. For PMCs, both strong
and weak bisimulation can be applied, while for PMRMs only
strong bisimulation is used. The most interesting part is for
PMDPs, for which we minimise the encoded PMC instead
of the original one. The following lemma shows that strong
(weak) bisimilar states in D are also strong (weak) bisimilar
in D, for each maximal well-defined evaluation:

Lemma 5 Let D = (S, sg, P, V) be a PMC with sy, s € S.
Let B be a set of target states. Then, for all maximal well-
defined evaluation u, sy ~p sy implies that sy ~p, 2, and
s1 ~p s implies that s1 ~p, $>.

Proof First we prove s; ~p s2 = s1 ~p, 2 for all well-
defined evaluations u:

If s1 ~ s, then there exists a strong bisimulation R
with s1Rs>. Obviously R is also a bisimulation in D,: for
s{Rsy and C € S/R, we have P(s|, C) = P(s}, C) implies
P,(s1, C) = P, (s}, C). Whether states are contained in B is
not changed by the model.

Now we prove s1 Xp s = §1 ~p, s2 for all maximal
well-defined evaluations u:

If 51 ~ s7, then there exists a weak bisimulation R with
s1Rs2. Moreover, for 5| Rs) it holds

1. s; eBiffs)eB
2. if P(s;, [s{lr) # 1 fori = 1,2 then it is 1—5((?’[?]:9 -
51018

P(s}.0) e P
TPGLL0R forall C € S/R if 5] Rs,, and

3. s} can reach a state outside [s}] iff s, can also in Gp.

We show that R is also a weak bisimulation in D,. For
(1), this is clear. For (2), assume that P, (s, [s/]g) < 1 for

@ Springer

1—wv5,4

9T@fm
PG

original model

()=~

maximal evaluation

X@/

Vs 0 =0

Fig. 3 Weak bisimulation does not maintain minimal reachability in
PMDPs

i = 1, 2. In this case, we must have P(sl.’, [slf]R) # 1 and thus

Pis;,C) P50 C . P,(s].0)
PG, T0 — TP Which implies 15 oy =
M. For (3) we notice that in maximal well-defined
I*Pu(Azy[Az]R)

evaluations we always can reach B from states not in B
inGp,.

In Fig. 3, it is illustrated why weak bisimulation is
only valid for maximal evaluations. The computed par-
titioning with respect to weak bisimulation is S/R =
{{s0, 51, 52}, {s4}}. This is correct with respect to any max-
imal well-defined evaluation u: since u(vy, o) > 0 imply-
ing both s1 and s, can reach B. The quotient automaton is
depicted in the middle of the figure.

Now consider the evaluation function " with u'(vs, 4) =
0. Obviously #’ is not maximal well defined, as state s| cannot
reach B. For this evaluation no states are weak bisimilar; thus
the quotient is the same as the original automaton (depicted
on the lower part). 0

Both strong and weak bisimulation preserve the reachabil-
ity probability for ordinary MCs [3, 17]. By the above lemma,
for PMCs, both strong and weak bisimulation preserve reach-
ability probability for all maximal well-defined evaluations.
A similar result holds for PMRMs: if two states s1, s2 of
R = (D, r) are strong bisimilar, i.e. s; ~g s2, then for all
maximal well-defined evaluations u, we have s; ~, 2. As
a consequence, strong bisimulation preserves expected accu-
mulated rewards for all well-defined evaluations for PMRM:s.

Now we discuss how to minimise PMDPs. Instead of com-
puting the bisimulation quotient of the original PMDPs M,
we apply the bisimulation minimisation algorithms on the
encoded PMCs enc(M). Since both strong and weak bisim-

Parametric probabilistic reachability

-G
1 L=

Fig. 4 Bisimulation for PMDPs

ulation preserve reachability for PMCs, by Lemmas 3 and
4, bisimulation minimisation on the encoded PMC enc(M)
also preserves the maximum reachability probability on M
with respect to strictly well-defined evaluations. Thus, we can
apply the efficient strong and weak bisimulation algorithm
for the encoding PMC directly. The following example illus-
trates the use of strong and weak simulations for PMDPs:

Example 2 Consider the encoding PMC on the upper part
of Fig. 4. States s1, 57 are obviously strong bisimilar. More-
over, in the quotient, we have that the probability of going to
the equivalence class {s1, s2} from sg is 1. Because of this,
the variable vy , disappears in the quotient. Now consider the
lower part. In this encoding PMC, states sy, 52, s3 are weak
bisimilar.

Remark For the lower part of Fig. 4, we explain below why
our results do not hold when computing minimum reach-
ability probabilities. Using the state elimination algorithm,
we obtain that the probability of reaching s4 from sg is 1,
independently of the variable v, ,. However, the minimum
reachability probability is actually O instead. Moreover, states
50, 51,52 and s3 are bisimilar; thus, in the quotient we
have the probability 1 of reaching the target state directly.
Thus, the information about minimum reachability prob-
ability is also lost during the state elimination and also
during the weak bisimulation lumping of the encoding
PMC.

3.5 Complexity

Since our algorithm is dealing with rational functions, we
first discuss briefly the complexity of arithmetic for poly-
nomials and rational functions. For more detail we refer to
the literature [13]. For a polynomial f, let mon(f) denote
the number of monomials. Addition and subtraction of two
polynomials f and g are performed by adding or sub-
tracting coefficients of like monomials, which takes time
mon(f)+mon(g). Multiplication is performed by cross-mul-
tiplying each monomials, which takes O (mon(f) - mon(g)).
Division of two polynomials results a rational function,

which is then simplified by shortening the greatest common
divisor (GCD), which can be obtained efficiently using a
variation of the Euclid’s algorithm. Arithmetic for ratio-
nal functions reduces to manipulation of polynomials, for

example, % + g—; = %. Checking whether two ratio-

nal functions % and f,—; are equal is equivalent to checking
whether f1g> — f>g1 1s a zero polynomial.

We now discuss the complexity of our algorithms. In each
elimination step, we have to update the transition functions
(or rewards for PMRMs) which takes O(n?) polynomial
operations in worst case. Thus, altogether O(n>) many oper-
ations are needed to get the final function, which is the same
as in the state elimination algorithm [7]. The complexity of
arithmetic for polynomials depends on the degrees. The size
of the final rational function is in worst case n©ogm)

For PMDPs, we first encode the non-deterministic choices
via new binary variables. Then, the encoding PMC is submit-
ted to the dedicated algorithm for parametric MCs. The final
function can thus contain both variables from the input model
and variables encoding the non-determinism. As shown in
Lemma 4, the evaluation is of exponential size in the number
of variables encoding the non-determinism occurring in the
final rational function.

We also discuss briefly the complexity of the bisimu-
lation minimisation algorithms. For ordinary MCs, strong
bisimulation can be computed [11] in O(mlogn) where
n, m denote the number of states and transitions, respec-
tively. The complexity of deciding weak bisimulation [3] is
O(mn). These algorithms can be extended to PMCs directly,
with the support of operations on functions. The complexity
is then O(mlogn) and O(mn) many operations on ratio-
nal functions for strong and weak bisimulation, respec-
tively.

4 Case studies

We have built the tool PARAM [15], which implements
our new algorithms, including both the state-elimination
algorithm as well as the bisimulation minimisation algo-
rithm. PARAM allows a guarded-commands based input
language supporting PMC, PMRM and PMDPs. The lan-
guage is extended from PRISM [19] with unknown param-
eters. Properties are specified by PCTL formulae without
nesting.

The sparse matrices are constructed from the model, and
then the set of target states B is extracted from the formula.
Then, bisimulation minimisation can be applied to reduce the
state space. For PMCs, both strong and weak bisimulation
applies, and for PMRMs, currently only strong bisimulation
is supported. For PMDP, bisimulation is run for the encoded
PMC. We implemented methods and data structures to handle

@ Springer

E. M. Hahn et al.

Table 1 Performance statistics for crowds protocol

N R Build(s) No bisimulation Weak bisimulation Result
States Trans. Elim.(s) Mem(MB) States Trans. Lump(s) Elim.(s) Mem(MB)
3 3 1192 1982 4 33 62 0 2 0.3129
5 3 8617 14701 57 127 257 0 0.3840
7 5 37169 64219 1878 13 353 732 1 181 15 0.4627
10 3 3 6552 14857 132 4 33 62 0 0 5 0.2540
10 5 7 111098 258441 1670 40 127 257 2 51 0.3159
10 7 47 989309 2332513 — - 367 763 26 259 441 0.4062
15 3 4 19192 55132 504 10 33 62 0 0 12 0.2352
15 5 31 591455 1739356 — - 127 257 14 7 305 0.2933
20 3 8 42298 146807 2044 22 33 63 1 0 26 0.2260

rational functions, for example, the basic arithmetic opera-
tions, comparisons and simplification. The computer algebra
library COCOALIB [1] is used for handling the cancellation
part. For details of the tool, we refer to the corresponding
tool paper [15].

We consider a selection of case studies to illustrate the
practicality of our approach. All of the models are extended
from the corresponding PRISM models. All experiments were
run on a Linux machine with an Intel Core 2 Duo (tm) proces-
sor at 2.16 GHz equipped with 2 GB of RAM. We updated
the performance figures for the case studies and also give
more details about the time the different parts of the analysis
need.

4.1 Crowds protocol

The intention of the Crowds protocol [29] is to protect the
anonymity of Internet users. The protocol hides each user’s
communications viarandom routing. Assume that we have N
honest Crowd members, and M dishonest members. More-
over, assume that there are R different path reformulates. The
model is a PMC with two parameters of the model:

1. B= MLJFN is the probability that a Crowd member is
untrustworthy,

2. P is the probability that a member forwards the package
to a random selected receiver.

With probability 1 — P it delivers the message to the receiver
directly. We consider the probability that the actual sender
was observed more than any other one by the untrustworthy
members. For various N and R values, Table 1 summarises
the time needed for computing the function representing
this probability, with and without the weak bisimulation
optimisation. With “Build(s)” we denote the time needed
to construct the model for the analysis from the high-level
PRrISM model. The column “Elim.(s)” states the time needed

@ Springer

for the state elimination part of the analysis. “Mem(MB)”
gives the memory usage. When applying bisimulation mini-
misation, “Lump(s)” denotes the time needed for computing
the quotient. For entries marked by “-”, the analysis did not
terminate within 1 h. In the last column we evaluate the prob-
ability for M = & (thus B = %) and P = 0.8. An interesting
observation is that for several table entries the weak bisimu-
lation quotient has the same size for the same R, but different
probabilities. We also checked that the graph structure was
the same in these cases. The reason for this is that then the
other parameter N has only an effect on the transition prob-
abilities of the quotient and not its underlying graph.

From Table 1 we also see that for this case study the usage
of bisimulation helped to speed up the analysis very much.
For the N and R considered, the speedup was in the range of
about 10 for N = 5, R = 7 to factor such that the time for
the state elimination was negligible, as for N = 15, R = 3.
Also, the time for the bisimulation minimisation itself did
not take longer than 26 s. Using bisimulation minimisation,
we are able to handle models with several hundred thousands
of states.

In Fig. 5 we give the plot for N = 5, R = 7. Observe that
this probability increases with the number of dishonest mem-
bers M, which is due to the fact that the dishonest members
share their local information. On the contrary, this probability
decreases with P. The reason is that each router forwards the
message randomly with probability P. Thus, with increasing
P the probability that the untrustworthy member can identify
the real sender is then decreased.

4.2 Zeroconf

Zeroconf [6] allows the installation and operation of a net-
work in the most simple way. When a new host joins the net-
work, it randomly selects an address among the K = 65024
possible ones. With m hosts in the network, the collision
probability is ¢ = %. The host asks other hosts whether they

Parametric probabilistic reachability

477777 7/

LT T 777777777

LANFFALT T

'.',,,',I,I"IIIIIII[
L7

Fig. 5 Upper crowds protocol. Lower Zeroconf

p/l p/1 p/1
— (o))

1-p/1

Fig. 6 Zeroconf collision detection

are using this address. If a collision occurs, the host tries
to detect this by waiting for an answer. The probability that
the host gets no answer in case of a collision is p, in which
case he repeats the question. If after n tries the host got no
answer, the host will erroneously consider the chosen address
as valid. A sketch of the model is depicted in Fig. 6. We con-
sider the expected number of tries till either the IP address
is selected correctly or erroneously, that is, B = {sok, Serr}-
For n = 140, the plot of this function is depicted in on the
lower part of Fig. 5. The expected number of tests till termi-
nation increases with both the collision probability as well as
the probability that a collision is not detected. Bisimulation
optimisation was not of any use, as the quotient equals the
original model. For n = 140, the analysis took 64 s and 50
MB of memory.

4.3 Cyclic polling server

The cyclic polling server model [22] consists of a number of
N stations which are handled by the polling server. Process
i is allowed to send a job to the server if he owns the token,
which circulates around the stations in a round robin manner.

This model is a parametric continuous-time Markov chain,
but we can apply our algorithm on the embedded discrete-
time PMC, which has the same reachability probability. We
have two parameters: the service rate p and y is the rate to
move the token. Both are assumed to be exponentially distrib-
uted. Each station generates a new request with rate 1 = %
Initially the token is at state 1. We consider the probability
p that station 1 will be served before any other one. Table 2
summarises performance for different N. The last column
corresponds to the evaluation u = 1, y = 200.

On the upper part of Fig. 7 a plot for N = 8§ is given.
We have several interesting observations. If i is greater than
approximately 1.5, p first decreases and then increases with
y. The mean time of the token staying in state 1 is % With
increasing y, it is more probable that the token passes to
the next station before station 1 sends the request. At some
point, however (approximated y = 6), p increases again
as the token moves faster around the stations. For small p
the probability p always increases with increasing y. The
reason for this is that the arrival rate 1 = % is very small; it
means also that the token moves so fast that the chance for
station 1 to be scheduled at first point is rather small. Thus,
by increasing the speed with which the token moves around,
we give station 1 more chances to catch it. Now we fix y to
be greater than 6. Then, p decreases with u, as increasing
(implies also a larger A, which means that all other states
become more competitive. However, for small y we observe
that i increases later again: in this case, station 1 has a higher
probability of catching the token initially at this station. Also
in this model, bisimulation has quite a large effect on the time
needed for the analysis.

4.4 Randomised mutual exclusion

In the randomised mutual exclusion protocol [28] several
processes try to enter a critical section. We consider the pro-
tocol with two processes i = 1, 2. Process i tries to enter
the critical section with probability p;, and with probability
1 — p;, it waits until the next possibility to enter and tries
again. The model is a PMRM with parameters p;. A reward
with value 1 is assigned to each transition corresponding to
the probabilistic branching p; and 1 — p;. We consider the
expected number of coin tosses until one of the processes
enters the critical section the first time. A plot of the expected
number is given on the lower part of Fig. 7. This number
decreases with both p; and p», because both processes have
more chances to enter their critical sections. The computation
took 98 s, and 5 MB of memory was used. The model con-
sisted of 77 states and 201 non-zero transitions. Converting
the transition rewards to state rewards and subsequent strong
bisimulation minimisation lead only to a minimal reduction
in state and transition numbers and did not reduce the analysis
time.

@ Springer

E. M. Hahn et al.

Table 2 Performance statistics for cyclic polling server

N Build(s) No bisimulation Weak bisimulation Result
States Trans. Elim.(s) Mem(MB) States Trans. Lump(s) Elim.(s) Mem(MB)
4 1 66 192 2 13 36 0 0 3 0.2500
5 1 162 560 2 2 16 46 0 0 3 0.2000
6 1 386 1536 10 2 19 58 0 0 2 0.1667
7 1 898 4032 41 3 22 68 0 0 3 0.1429
8 1 2050 10240 150 4 25 79 0 1 4 0.1250
9 2 4610 25344 733 6 28 91 0 1 6 0.1111

e
B e e e
e

Fig. 7 Upper cyclic polling server. Lower randomised mutual exclu-
sion

4.5 Bounded retransmission protocol

In the bounded retransmission protocol [18], a file to be sent
is divided into a number of N chunks. For each of them,

Table 3 Performance statistics for bounded retransmission protocol

the number of retransmissions allowed is bounded by MAX.
There are two lossy channels K and L for sending data and
acknowledgements, respectively. The model is a PMDP with
two parameters pK, pL denoting the reliability of the chan-
nels K and L, respectively. We consider the property “The
maximum reachability probability that eventually the sender
does not report a successful transmission”. In Table 3 we give
statistics for several different instantiations of N and MAX.
The column “Nd.Vars” gives the number of variables intro-
duced additionally to encode the non-deterministic choices.
We give only running time if the optimisation is used. Other-
wise, the algorithm does not terminate within 1 hour. The last
column gives the probability for pK = 0.98 and pL = 0.99,
as the one in the PRISM model. We observe that for all
instances of N and MAX, with an increasing reliability of
channel K the probability that the sender does not finally
report a successful transmission decreases.

Notably, we encode the non-deterministic choices via
additional variables, and apply the algorithm for the resulting
parametric MCs. This approach may suffer from exponential
enumerations in the number of these additional variables in
the final rational function. In this case study, however, the
method works quite well. This is partly owed to the fact, that
after strong and weak bisimulation on the encoding PMC,
the additional variables vanish as illustrated in Example 2.
We are well aware, however, that still much work needs to
be done to handle general non-deterministic models.

N MAX Build(s) Model ‘Weak bisimulation Lump(s) Elim.(s) Mem(MB) Result
States Trans. Nd. Vars States Trans.

64 4 2 8551 11564 137 643 1282 3 0 6 1.50E-06
64 5 2 10253 13916 138 1538 3 0 6 4.48E-08
256 4 4 33511 45356 521 2563 5122 48 6 19 6.02E-06
256 5 4 40205 54620 522 3075 6146 58 8 22 1.79E-07
512 4 12 66792 90412 1035 5123 10243 230 35 52 1.20E-05
512 5 10 80142 108892 1036 6147 12291 292 52 56 3.59E-07

@ Springer

Parametric probabilistic reachability

Table 4 Performance

comparisons with regular Number of workstations 4 5 6 7 8
expressions method Length of regular expression (Daws® method) 191 645 2294 8463 32,011
Number of terms (our method) 7 9 11 13 15
Total degree (our method) 6 8 10 12 14

5 Comparison with Daws’ method

Our algorithm is based on the state elimination approach,
inspired by Daws [10], who treats the concrete probabilities
as an alphabet, and converts the MC into a finite automa-
ton. Then, a regular expression is computed and evaluated
into functions afterwards (albeit lacking any implementa-
tion). The length of the resulting regular expression, however,
has size n©1°2") [14] where n denotes the number of states
of the automaton. Our method instead intertwines the steps
of state elimination and evaluation. The size of the resulting
function is in worst case still in n©1°€"); thus there is no
theoretical gain, pessimistically speaking.

The differences of our and Daws’ method are thus on the
practical side, where they indeed have dramatic implications.
Our method simplifies the rational functions in each interme-
diate step. The worst case for our algorithm can occur only in
case no rational function can be simplified during the entire
process. In essence, this is the case for models where each
edge of the input model has a distinguished parameter. We
consider this a pathological construction. In all of the inter-
esting models we have seen, only very few parameters appear
in the input model, and it seems natural that a model designer
does not deal with more than a handful of model parameters in
one go. For those models, the intermediate rational functions
can be simplified, leading to a space (and time) advantage.
This is the reason why our method does not suffer from a
blow up in the case studies considered in Sect. 4. To shed
light on the differences between the two methods, we return
to the cyclic polling server example:

In Table 4, we compare the two methods in terms of the
observed size requirements. For each number of workstations
from 4 to 8, we give the length of the regular expression aris-
ing in Daws’ method. On the other hand, we give the number
of terms and the total degree of the numerator and denom-
inator polynomials of the rational function resulting from
our method. The numbers for Daws’ method are obtained by
eliminating the states in the same order as we did for our
method, namely by removing states with a lower distance
to the target set first. For the length of regular expressions,
we counted each occurrence of a probability as having the
length 1, as well as each occurrence of the choice operator
(“4”) and the Kleene star (“*”). We counted braces as well
as concatenation (“-””) as having length zero.

As can be seen from the table, the size of the regular
expression grows very fast, thus materializing the theoretical

complexity. This makes the nice idea of Daws [10] infeasible
in a direct implementation. For our method, both the number
of terms as well as the total degree grow only linearly with
the number of workstations.

6 Related work and discussions

Our work has connections to several other recent scien-
tific contributions. Lanotte et al. [27] considered parametric
MCs, showing that the problem whether there exists a well-
defined evaluation is in PSPACE and whether such an evalu-
ation induces a given reachability probability c is, however,
undecidable. Recently, Damman et al. [9] have extended the
approach of Daws [10] to generate counterexamples for MC.
The regular expressions generated can be seen as a more
compact and structured representation of counterexamples
than providing a set of paths.

A closely related work is done by Han et al. [16], in
which they have studied the parametric synthesis for para-
metric continuous-time Markov chains (PCTMCs). Instead
of abstracting time by steps in discrete-time Markov chains,
transitions in PCTMCs have exponential distributions.
CTMCs are widely useful for modelling failure rates, pro-
duce or service rates. For time-bounded properties
(probability of reaching a set of goal state within a fixed
number of steps), Han et al. [16] have attacked the problem
of finding the set of parameter values (forming the synthesis
region) such that the property holds in the induced CTMC.
While this problem is in general undecidable, an approxi-
mative method is used to solve it anyhow, in the majority
of cases. This is done by discretising the continuous region
and obtaining a finite number of sample points to approxi-
mate the original region. Their work is orthogonal to ours:
while they study how to form the synthesis region, we give
efficient algorithm for computing the rational function repre-
senting the unbounded reachability probability. Thus, their
algorithms can be directly applied in our setting to solve
the synthesis problem for unbounded reachability for PMCs.
They have not yet considered reward properties. One possible
future work would be to combine our approaches to consider
continuous-time Markov reward models.

Another closed model in the literature is interval Markov
chains [8,12,25,30]. In this model, each transition proba-
bility (or rate, for continuous-time models) is given as an
interval, such that it has a minimal and a maximal value.

@ Springer

E. M. Hahn et al.

The Markov chains represented by an interval Markov chain
are those concrete models in which all probabilities lie within
the restricting intervals, and the probabilities sum up to one
(for discrete-time models). This way, they can be used to rep-
resent abstractions of ordinary Markov chains [24]. Different
from PMCs, results obtained are usually extremal probabil-
ities or other values of the model, instead of a function rep-
resenting all possible such values, as for PMCs.

There is also research in parametric models in the area of
timed automata. For instance, timed automata are considered
in which clock constraints are not fixed but given as a set of
parameters [21]. Instead of checking whether the automaton
fulfills the property, the paper targets at computing parameter
regions of the model for which the property is fulfilled.

7 Conclusion

In this paper, we have presented algorithms for analysing
parametric Markov models, possibly extended with rewards
or non-determinism, together with an implementation in the
tool PARAM. The PARAM source code is published under the
GPL license. The tool, the case studies and additional mate-
rial can be found at

http://depend.cs.uni-sb.de/tools/param.

As future work, we are investigating general improve-
ments of the implementation with respect to memory usage
and speed, especially for the setting with non-determinism.
We are also investigating heuristics for the optimal order
in which states are to be eliminated, referring to memory
and time usage. Additionally, we plan to look into continu-
ous time models—with clocks—, and PMDPs with rewards.
Other possible directions include the use of symbolic model
representations, such as MTBDD-based techniques, sym-
bolic bisimulation minimisation [32] and also a symbolic
variant of the state elimination algorithm. We would also
like to explore whether our algorithm can be used for model
checking interval Markov chains [30].

Acknowledgments This work is supported by the NWO-DFG bilat-
eral project ROCKS, by the DFG as part of the Transregional
Collaborative Research Center SFB/TR 14 AVACS and the Graduier-
tenkolleg “Leistungsgarantien fiir Rechnersysteme”, by the European
Community’s Seventh Framework Programme under grant agreement
n? 214755, and is supported in part by MT-LAB, a VKR Centre of
Excellence. We are grateful to Bjorn Wachter (Saarland University) for
insightful discussions and for providing us with the parser of PASS.

A Proofs
A.1 Proof of Lemma 1

Let D be a PMC and B be a set of target states. Assume that
the PMC D and set of states B satisfy the requirement of

@ Springer

Algorithm 1, i.e., state s € B is absorbing. For all s € S,
it holds reach(sq, s) and reach(s, B). We show that the exe-
cution of one loop iteration in lines 1-1 in which a state s
is eliminated does not change the probability of reaching B
under any maximal well-defined evaluation function u. Let
Pathﬁl(so, B)={o € Pathg1 | first(o) = so A last(o) € B}
denote the set of paths reaching B. The probability of reach-
ing B can be then expressed by the sum

PrP«®B) = >

o ePath/’ﬁ (s0,B)

PrPu(o)

We fix an evaluation function u. We let D; = (87, so, P1)
denote the PMC before elimination of the state s € S\B U
{so}, and let D, = (52, 5o, P2) denote the PMC after elimi-
nating state s. Assume that u is maximal well defined for D;.
By construction of the algorithm, it holds that So = S1\{s},
and that

Py (s1, 9)P1(s, 52)

Py(s1, 52) = Pi(s1,82) + C1—Pi(s,5) ©

Now it is sufficient to show that
PrPu B) = prDP2u (B) “4)

For path o € Pathjgll (so, B) in Dy, we define the induced
path in D, by ind(o) € Paz‘hz2 (so, B), which is obtained
by eliminating each occurrence of s in o. For an arbitrary
path o’ € Path]z2 (sg, B) in D5, we define pre(c’) = {0 €
Pathﬁ1 (s0, B) | ind(c) = o'}. The relation of o’ and pre(c”’)
is illustrated in Fig. 8. Obviously, it holds that

D
Pathy, (so, B) = U

o’erh}gz (50,B)

pre(o”)

Now to show Eq. 4, it is sufficient to show that for each
o’ € Path? (s, B), it holds that

PrPupre(a’)) = PriP?u(o”) ®)

Without loss of generality, let 6’ = sg, 51, ..., s, with
sp € B. Before we show Eq. 5, we first introduce some
notations. For j = 0,...,n — 1 and i; € N, we define

f(sj,ij,sj41) by
f(sj,ij,si41)
_ | Pisjos541) .
Pi(sj,)Pi(s,)i 7P (s, 541)

For an interpretation of f(s;, 7, sj4+1), consider each part
...85;8Ysj41 ... of the path sos'0s1s™ - - - s"=1s,:

if ij=0
if ij >0

(6)

1. sjsjy1,thatis, nos occurs in between s; and s;11. Then
the transition probability is Py(s;, sj+1), as we have a
direct transition from s; to s;11 at this point.

Parametric probabilistic reachability

Fig. 8 Illustration of state P(s,s) P(s,s) P(s,s)
elimination proof /\F(SO" s) P(s,s1 P(s1,s P(s, s9) P(sp_1,5) P(s, s,
OO, — ()
P(s0, 51) P(s1,s2) P(Sn-1,5n)
P(so,51) + PRB0g™ Plsr,so) + TRREG Py, sa) + Dopre)

(o)
N

2. sjsi-i_lsj+1 where i; > 0, that is, there are one or sev-

eral s in between. We first have a transition from s;
to s, then a number of i; — 1 self-loops in s and then
a transition from s to s;, leading to the probability
Pi(s;, 9P (s,)Py (s, 5j41).

If 55, sj41 is clear from the context, we write simply f(i;).
Thus, it holds

Pi(s;, $)Pi(s,5;+1)

> fi)) =Pilsj i) +

ij=0 1 —=Pi(s,s)
=Pa(sj. sj+1))
Now we show Eq. 5:
PrPu(pre(a’))
o (0.¢] o0
= Z Z Z prDPu (S()Siosls“ ”.sin—lsn)
i0=0i1=0 7,—1=0
00 00 00 n—1
30308 W |V I
i0=0il:O l'11—1=0 j=0
o0 o0 00
=D rao | [2 ran > fln-)
i0=0 i1=0 in—1=0
. n—1
@ H Py(si, siv1) = PrP2u(g)
i=0

Since u is maximal well defined, 1 — P (s, s) # 0, implying
Eq. 5. Observe that u is also maximal well defined for D,,
since reach®Vu (s;, B) implying also

reach P (s1,B)

for all s1 & B.

After the execution of lines 1-1 the model consists only
of the initial state sy and the set of target states B. Now we
can directly compute the reachability probability:

o0
Pr(so. B) = D > P(s0., 50) P(s0. 5)
i=0 seB

=——P B
T Plso.s0) (50, B)

- =

NG

A.2 Proof of Lemma 2

Let R = (D, r) be a PMRM and B be a set of target states.
Assume that the PMRM R and set of states B satisfy the
requirement of Algorithm 2, i.e., state s € B is absorbing.
For all s € S, it holds reach(so, s) and reach(s, B). We show
that the execution of one loop iteration in lines 2—2 in which
a state s is eliminated does not change the expected reward
until B is reached under any maximal well-defined evaluation
function u.

We fix an evaluation function u. We let Ry = (Dy, rq)
with D1 = (81, s¢, P1) denote the PMRM before eliminat-
ing state s € S\B U {so}, and let R> = (D3, ry) with D, =
(S2, s0, P2) denote the PMRM after eliminating state s. As
for PMCs, it holds that S, = S7\{s}, and the matrix P; is as
defined in Eq. 3. For s, 5" € Sy, we let r{(s, s") denote the
reward r1(s) + r1(s, s"). The value 7} (s, s") is defined like-
wise. We now discuss how the reward function r; is obtained
in Algorithm 2. The reward of a state s’ € S, does not change:
r2(s") = r1(s"). For s1, 52 € S, let

Pi(s1, 5)Pi(s, 52)

, = 8
Pe(St, 52) = Pi(s.5) (8)
P
re(s1, 52) i=ri(si,) +ri (s, s2) + %ﬁ(& 5)
9
__ DPe(st,s2)re(s1, 2) + Pi(s1, s2)r1(s1, $2)
ra(s1, $2) ==
Pe(s1,52) + Pi(s1, 52)
(10
Pa(s1,82) = pe(s1,s2) +Pi(s1, 52) (1D

as defined in the algorithm. Note that in case P (s1, s) = 0,
we have p,(s1, s2) = 0implying that r>(s1, s2) = r1(s1, $2).
Assume that u is maximal well defined for D;. Now it is

sufficient to show that
RRV(59, B) = RR2 (59, B) (12)

Now with the notation of the proof of Lemma 1, we prove
that for each o’ € Path]% (so, B), it holds that

RMRu (pre(c’)) = RR2)u (o)) (13)
where R® (o) = PrP(c)X® (o) for R, and R®(C) =
D ec R® (o), for which we extended X to finite paths

@ Springer

E. M. Hahn et al.

ending in B in an obvious way. Without loss of generality, let
o' =s0,51,...,5, withs, € B.For j =0,...,n— 1 and
ij € N, the function f(s;,i;,s;41) is as defined in Eq. 6.
Moreover, we define g(s;,i;,s;+1) by

8(sj.ij,Sj+1)

_ VT(Sj,Sj+1) ifij=0
riGsj, $)+ri(s, sj)+0; =D (s, s)) ifi;>0
(14)

If s; and s are clear from the context, we write f(i;)
and g (i) instead. Similar to f (i), g(i;) denotes the rewards
gained via visiting the path segment. . . 55,11 ... for the case
ij=0,0r...5;s's;41...forthecasei; > 0.Now we show
Equation 13:

RRVu(pre(a’))
o0 o0 o0
= Z z e Z pr(Pou (Sos’osls“
i0=01i;=0 in—1=0
..si”*'sn)

503 (i)

ip=0i1=0 in—1

..s"‘*‘sn)

X R (sosios]si‘

O

3
|

—_

—_

n—

(Z Z Z f(ij)g(ik))
i0=01i;=0 in_1=0j=0

—1 0

(Z f(m)) (> fli- o) (Z f(ik)g(ik))
k=0 \ip=0 ir—1=0 ir=0
-(Z f(ikm) (> f(inn)

ik+1=0 in—1=0

n— n—1 . ‘ .
- Z(HszH) W)
k=0

x~
Il
=

=

P (sk, sk+1)

n—1 n—1 00 , .
- >0 Fi0gip)
= (H Pa(si, Si+l)) (Z W

i=0 k=0
n—1 oo . .
o S g i)
P (Dy)uy, 1 i =0
g @)(é P> (sk, Sk+1))

By definition, we have RR2) (o) = Pr(P2u(o") X R2)u (7).
Recall for a path o, it holds X*2(¢') = ZZ;(I) 3 (Sky Sk1);

thus, it is now sufficient to show thatforeachk =0, ..., n—1,
it holds that

o

>)8k = Pa(sk. Se)73 (s Skt (15)

ir=0

@ Springer

According to Eq. 14, 37| f(ix)g(ix) equals

(¥ sk) + 7G50 s1)) D £ (i)

ir=1

+ (60 D FlG - 1) (16)

ir=1

By Egs. 7 and 8, it holds that

Z S (k) = pe(Sks Sk+1) (17)

ir=1

For 0 < p. < 1, the sum Zioio ipé can be simplified

Using this, we can simplify the second sum of

Pe
O Tpo
Equation 16:

Pi(s,s)

2 @0 = 1) = pelsic i) T—p (o (18)

ir=1

Now putting Egs. 16,17,18 together with Eq. 9, we have

> Fgio

ir=1
= (re(Sks Sk1) + 11(56)) Pe (Sk» Sk+1)

(10)
=" Po(sk, Sk+1)r2(Sk, Sk+1)
—P1 (s, sk (ks Sk+1) + 11056 Pe (Sk» Sk+1)

(1)
=" Po(sk, Sk+1)75 (ks Sk+1) — P1(se, sk1)r7] (Sk, Sk41)

which proves Eq. 15. This means that the expected accumu-
lated reward till B is reached is equal in the old and the new
models. After the execution of lines 2-2 the remaining paths
with non-zero probabilities from the initial states to B all have
a length of 1. Because of this, in line 2 the expected reward
can be obtained directly from the probability matrix P and
reward matrix r. As before, let r*(s, s”) denote r (s) +r (s, s').
Then,

R (50, B)

=D " P(s0.50) P(s0,5) (r*(s0.8) + i - r*(s0. 50))

seB i=0
o0
=> (P(so, $)r*(s0. 8) D P(s0, 50)’
seB i=0

+ P(s0, $)r*(s0, 50) D _ i - P(s0, so)")

i=0
-y (P(507 s)r*(so, s) P(so, $)r*(so, s0)P(so, SO))
= +
S\ 1 =PGso,)

(1 — P(s0, 50))*

The proof to show that no divisions by zero occur and that the
evaluation function u is still maximal well defined is analo-
gous to the one in A.1 O

Parametric probabilistic reachability

References

—

Abbott, J.: The design of CoCoALib. In: ICMS, pp. 205-215 (2006)

2. Baier, C., Ciesinski, F., GroBer, M.: ProbMela and verification of

12.

13.

14.

15.

16.

Markov decision processes. SIGMETRICS 32(4), 22-27 (2005)
Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic
processes. In: CAV, pp. 119-130 (1997)

Baier, C., Katoen, J.-P., Hermanns. H., Wolf, V.: Comparative
branching-time semantics for Markov chains. Inf. Comput. 200(2),
149-214 (2005)

Bianco, A., de Alfaro, L.: Model checking of probabilistic and
nondeterministic systems. FSTTCS 15, 499-513 (1995)
Bohnenkamp, H.C., van der Stok, P., Hermanns, H., Vaandrager,
F.W.: Cost-optimization of the IPv4 zeroconf protocol. In: DSN,
pp. 531-540 (2003)

Brzozowski, J.A., Mccluskey, E.J.: Signal flow graph techniques
for sequential circuit state diagrams. IEEE Trans. Electron. Comp.
EC 12, 67-76 (1963)

Chatterjee, K., Henzinger, T., Sen, K.: Model-checking omega-
regular properties of interval Markov chains. In: FoSSaCS, pp.
302-317 (2008)

Damman, B., Han, T., Katoen, J.-P.: Regular expressions for PCTL
counterexamples. In: QEST (2008)

Daws, C.: Symbolic and parametric model checking of discrete-
time Markov Chains. In: ICTAC, pp. 280-294 (2004)

. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space

lumping in Markov chains. Inf. Process. Lett. 87(6), 309-
315 (2003)

Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic Sys-
tems. In: SPIN, pp. 71-88 (2006)

Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer
Algebra. Kluwer, Dordrecht (1992)

Gruber, H., Johannsen, J.: Optimal lower bounds on regular expres-
sion size using communication complexity. In: FoSSaCS, pp. 273—
286 (2008)

Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM:
a model checker for parametric Markov models. In: CAV, 2010
(to appear)

Han, T., Katoen, J.-P., Mereacre, A.: Approximate parameter syn-
thesis for probabilistic time-bounded reachability. In: RTSS, pp.
173-182 (2008)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Hansson, H., Jonsson, B.: A logic for reasoning about time and
reliability. FAC 6(5), 512-535 (1994)

Helmink, L., Sellink, A., Vaandrager, F.W.: Proof-checking a
data link protocol. In: TYPES, vol. 806, pp. 127-165. Springer,
Heidelberg (1994)

Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: a
tool for automatic verification of probabilistic systems. In: TACAS,
pp. 441-444 (2006)

Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to auto-
mata theory, languages, and computation, 2nd edn. SIGACT
News 32(1), 60-65 (2001)

Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear para-
metric model checking of timed automata. J. Log. Algebra Pro-
gram. 52(53), 183-220 (2002)

Ibe, O.C., Trivedi, K.S.: Stochastic petri net models of polling sys-
tems. [EEE J. Selected Areas Commun. 8(9), 1649-1657 (1990)
Jonsson, B., Larsen, K.G.: Specification and refinement of proba-
bilistic processes. In: LICS, pp. 266-277. IEEE Computer Society,
New York (1991)

Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued
abstraction for continuous-time markov chains. In: CAV, vol. 4590,
pp. 311-324. Springer, Heidelberg (2007)

Kozine, 1., Utkin, L.V.: Interval-valued finite Markov chains. Reli-
able Comput. 8(2), 97-113 (2002)

Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model
checking. In: SFM, pp. 220-270 (2007)

Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric
probabilistic transition systems for system design and analy-
sis. FAC 19(1), 93-109 (2007)

Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic pro-
tocols. Distrib. Comput. 1(1), 53-72 (1986)

Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transac-
tions. ACM Trans. Inf. Syst. Secur. 1(1), 66-92 (1998)

Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov
chains in the presence of uncertainties. In: TACAS, pp. 394-410
(2006)

Stewart, W.J.: Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, Princeton (1994)

Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refine-
ment with dynamic balancing of time and space. In: QEST,
pp. 65-74 (2008)

@ Springer

	Probabilistic reachability for parametric Markov models
	Abstract
	1 Introduction
	2 Parametric models
	2.1 Bisimulation relations

	3 Algorithms
	3.1 Parametric MCs
	3.2 Parametric MRMs
	3.3 Parametric MDPs
	3.4 Bisimulation minimisation for parametric models
	3.5 Complexity

	4 Case studies
	4.1 Crowds protocol
	4.2 Zeroconf
	4.3 Cyclic polling server
	4.4 Randomised mutual exclusion
	4.5 Bounded retransmission protocol

	5 Comparison with Daws' method
	6 Related work and discussions
	7 Conclusion
	Acknowledgments
	A Proofs
	A.1 Proof of Lemma 1
	A.2 Proof of Lemma 2

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

