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Abstract. The universe of acyclic continuous-time
Markov chains can provide arbitrarily close approxima-
tions of any continuous probability distribution. We span
this universe by a compositional construction calculus
for acyclic phase-type distributions. The calculus draws
its expressiveness from a single operator, yet the calculus
is equipped with further convenient operators, namely
convolution, maximum, and minimum. However, the size
of the chains constructed in this way can grow rapidly.
We therefore link our calculus to a compositional mini-
mization algorithm that whenever applied almost surely
yields a chain with the least possible size. The entire ap-
proach is available in the form of an easy-to-use web ser-
vice. The paper describes the architecture of this service
in detail, and reports on experimental evidence demon-
strating its usefulness.
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mization – maximum – minimum – convolution – Erlang

1 Introduction

Continuous probability distributions are natural means
to model statistically varying phenomena. In full gen-
erality, it is difficult to store and manipulate contin-
uous probability distributions. In this respect, phase-
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type distributions stand out, because they can be rep-
resented by finite-state graph models, in fact by absorb-
ing continuous-time Markov chains. At the same time,
they can be used to approximate any continuous prob-
ability distribution with arbitrary precision. The same
holds true for the class of acyclic phase-type distribu-
tions, where the underlying graph is acyclic. Pragmat-
ically speaking, these kinds of models thus provide a
good compromise between expressiveness and model rep-
resentability. Furthermore, they are closed under widely
used stochastic operations such as maximum, minimum,
and convolution. Using these operations may however
drastically increase the model sizes.

This paper presents an approach enabling the specifi-
cation and manipulation of acyclic phase-type distribu-
tions, in such a way that their representations virtually
never occupy larger sizes than what is ultimately needed.
The backbone of this approach is an algorithm that al-
most surely (i.e., with probability 1) finds the smallest
possible representation of a given acyclic phase-type dis-
tribution, and it does so in cubic time. The algorithm is
embedded in a simple yet expressive calculus of delays,
enabling the user to specify complex delay dependen-
cies with the aid of convenient operations. The calculus,
called CCC, is parsimonious in the sense that it has no
actions or synchronization mechanisms and no recursion
operation. CCC can easily be embedded in a standard
process calculus providing these missing features. This
can follow the lines of interactive Markov chains [13]
or Markov automata [30], but also PEPA [15] or timed
automata with a stochastic semantics [9]. All these cal-
culi include the possibility to express exponentially dis-
tributed (non-synchronising) delays. These can be right-
away enhanced to acyclic phase-type distributions. CCC
is made available as a web service ensuring almost sure
minimality of the state-space sizes. This is an important
asset for the overall scalability of any kind of analysis
performed with these models.
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Contributions. This paper expands the conference pub-
lication [29], in which we presented the algorithm to al-
most surely minimize any given acyclic phase-type rep-
resentation to its minimal representation, by adding the
following contributions:

1. We define a stochastic process calculus that can be
used to conveniently generate and manipulate acyclic
phase-type distributions representing delays of pro-
cesses in a compositional manner.

2. We present a complete and stable implementation
of a tool chain, which encapsulates the minimization
algorithm and the stochastic calculus.

3. For the end user, we provide a convenient and easy-
to-use interface to the tool chain through a web ser-
vice and a web page.

4. We provide a case study to demonstrate the applica-
bility of the calculus and the minimization algorithm.

Organization of the paper. The paper is organized as fol-
lows: Section 2 reviews several important concepts from
continuous-time Markov chains and phase-type distri-
butions. Section 3 then introduces the calculus and its
properties. Section 4 discusses how and to what extend
representation minimality can be achieved. In Section 5
we discuss the implementation and web-service specifics
of our approach, followed (Section 6) by an exemplary
case illustrating its usefulness. Section 7 finally concludes
the paper.

2 Distributions, Canonicity and Stochastic
Operations

This section reviews continuous-time Markov chains and
phase-type distributions, together with important no-
tions including size, order, degree, and minimal repre-
sentation. Afterwards, two canonical forms for acyclic
phase-type representations and three common stochas-
tic operations on them are presented.

2.1 Phase-Type Distributions

A finite continuous-time Markov chain (CTMC) is a tu-
pleM = (S,Q, ~π), where S = {s1, s2, . . . , sn, sn+1} is a
countable set of states, Q : (S × S) → R is an infinites-
imal generator matrix, and ~π : S → [0, 1] is the initial
probability distribution on S. Intuitively, for any two
distinct states s, s′ ∈ S, Q(s, s′) specifies the rate of the
transition from s to s′. This means that the probabil-
ity that a state change (i.e., a transition) occurs from s

to s′ within t time units is 1 − exp(−Q(s, s′)t), namely
it is governed by the exponential distribution with rate
Q(s, s′). By definition it holds that Q(s, s′) ≥ 0 for all
s 6= s′, and Q(s, s) = −

∑

s6=s′ Q(s, s′). The negative of
the diagonal value, E(s) = −Q(s, s), is called the exit
rate of state s.

If state sn+1 is absorbing (i.e., E(sn+1) = 0) and all
other states si, for 1 ≤ i ≤ n, are transient (i.e., there is
a nonzero probability that si will never be visited once it
is left), the infinitesimal generator matrix of the CTMC
can be written as:

Q =

[

A ~A
~0 0

]

.

Matrix A is called a PH-generator and, since the first
n states in the CTMC are transient, it is non-singular.
Vector ~A is a column vector where its component ~Ai,
for 1 ≤ i ≤ n, represents the transition rate from si
to the absorbing state. Let ~1 be a column vector whose
components are all 1. Note that since Q is a generator
matrix (i.e., each of its row sums up to 0), A~1 = − ~A.

The CTMCM is fully specified by generator matrix
Q and initial probability vector ~π = [~α, αn+1], where ~α

is an n-dimensional row vector corresponding to the ini-
tial probabilities of the transient states, and αn+1 is the
probability to be immediately in the absorbing state.
The probability distribution of the time to absorption
in such a CTMC is called a phase-type (PH) distribu-
tion [20]. In this paper, all PH distributions are required
to be non-defective. This means that they do not have
mass at t = 0, which technically means that αn+1 = 0
and vector ~α is stochastic. So we exclude distributions
having a nonzero probability of stopping in zero time.
The pair (~α,A) is called the representation of the PH
distribution and PH(~α,A) is used to denote the PH dis-
tribution that has representation (~α,A). The dimension
of A is called the size of the representation. All PH rep-
resentations we are dealing with are assumed to be ir-
reducible. A representation is irreducible if for the spec-
ified initial probability distribution all transient states
are visited with non-zero probability.

A PH distribution is completely characterized by its
(cumulative) distribution function:

F (t) = 1− ~αexp(At) ~1, t ≥ 0.

An alternative characterisation is given by its Laplace-
Stieltjes transform (LST):

F̃ (s) =

∫ ∞

−∞

exp(−st)dF (t)

= ~α(sI−A)−1 ~A+ αn+1, s ∈ R+, (1)

where I is the identity matrix of dimension n. An LST
is a bijective transformation of a function to a complex
domain, resolving that function into its moments. In par-
ticular, if X is a continuous random variable with cumu-
lative distribution function F (t), then the i-th moment
of X is given by:

E[X i] = (−1)i
diF̃ (s)

dsi

∣

∣

∣

∣

s=0

.
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Fig. 1. An acyclic PH distribution

The LST in Equation (1) is a rational function. When
expressed in irreducible ratio, the degree of its denomi-
nator, which is called the algebraic degree of the distri-
bution, is no more than n. A PH distribution has more
than one irreducible representation [20,22]. The size of
a minimal irreducible representation, namely that with
the fewest possible number of states, is called the order
of the PH distribution. O’Cinneide in [22] showed that
the algebraic degree of a PH distribution is the lower
bound of its order.

The simplest of PH distributions is the family of ex-
ponential distributions. Indeed, this family of distribu-
tions is the building block of PH distributions. Maier
and O’Cinneide [18] show that exponential distributions
together with finite mixture, convolution, and recursion
operations can generate the whole of PH distributions.
A convolution of several exponential distributions with
the same rate is called an Erlang distribution.

Another interesting subset of PH distributions is the
family of acyclic PH (APH) distributions. The family
can be identified by the fact that the graph representa-
tions of their state spaces are acyclic; see Fig. 1 for an
example. Both families of exponential and Erlang dis-
tributions are subsets of APH distributions. An acyclic
minimal representation of an APH distribution is an
APH representation with the least number of states. The
acyclic order of an APH distribution is the size of its
acyclic minimal representation [24]. An APH distribu-
tion is called acyclic ideal if and only if its acyclic order
is equal to its algebraic degree. Thus, an acyclic-ideal dis-
tribution has a minimal representation that is acyclic. In
contrast, a non-acyclic-ideal APH distribution has even
smaller representations that possibly contain cycles.

O’Cinneide [23] proved a theorem that characterizes
APH distributions in terms of the properties of their
density functions and LSTs. In particular he showed
that an LST is the LST of an APH distribution if and
only if all of its poles are real. Thus, any general PH
representation—possibly containing cycles—represents
an APH distribution (and hence has an acyclic repre-
sentation) whenever all of the poles of its LST are real
numbers.

Notably, both APH and PH distributions are topo-
logically dense [16]. This implies that any continuous
distribution can be approximated arbitrarily closely by
an APH distribution or a PH distribution.

2.2 Canonicity

We now discuss two different canonical forms of
APH representations, each with a simple and easy-to-
understand structure. Each of them is “canonical” in
the sense that it (if viewed as a graph) is unique up to
isomorphism. Every APH representation can be trans-
formed into either of them without altering its stochastic
behavior, i.e., its distribution.

Ordered Bidiagonal Representation. A PH-generator of
the form:















−λ1 λ1 0 · · · 0
0 −λ2 λ2 · · · 0
0 0 −λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −λn















is called a bidiagonal generator, and it is denoted by
Bi(λ1, λ2, . . . , λn). The first canonical form is obtained
if the negative diagonal entries, the exit rates, of the
bidiagonal generator are in ascending order.

Theorem 1. Let (~α,A) be an acyclic phase-type repre-
sentation, λ1, λ2, . . . , λn be the eigenvalues of −A, and,
without loss of generality, assume that λn ≥ λn−1 ≥
. . . ≥ λ1 > 0. Then there exists a unique bidiagonal
representation, the ordered bidiagonal representation,
(~β,Bi(λ1, λ2, . . . , λn) such that:

PH(~β,Bi(λ1, λ2, . . . , λn)) = PH(~α,A).

This representation has a simple structure: the states
are ordered by their exit rates, each of them has only one
transition to its neighbour, and the initial distributions
spans the entire state space; see Fig. 2(a) for a graph
visualization.

An efficient algorithm, called the spectral polynomial
algorithm (SPA) [11], can be used to construct the
canonical ordered bidiagonal representation of any given
APH representation. SPA has complexity O(n3), where
n is the size of the given APH representation.

Cox Representation. A Dirac distribution is a probabil-
ity distribution that assigns full probability to a single
outcome. Let 0 ≤ pi < 1, for 1 ≤ i ≤ n − 1. A PH-
generator of the form:















−λ1 p1λ1 0 · · · 0
0 −λ2 p2λ2 · · · 0
0 0 −λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −λn















is called a Cox generator, and it is denoted by
Cx([λ1, p1], [λ2, p2], . . . , λn). Here, every state, apart
from the absorbing state, has a transition to the next
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Fig. 2. (a) An ordered bidiagonal and (b) a Cox representation
of the acyclic PH representation from Fig. 1

state, possibly a transition to the absorbing state, and
no other transitions. The second canonical form, the Cox
representation, is obtained by a Cox generator with de-
scending exit rates and a Dirac initial distribution to
the highest exit rate state. The name is due to David R.
Cox [7], who coined this representation; see Fig. 2(b) for
a graph visualization.

Theorem 2 ([8]). Let (~β,Bi(λ1, λ2, . . . , λn)) be an
ordered bidiagonal representation, and let vector
~δ = [1, 0, . . . , 0]. Then there exists a unique Cox rep-

resentation, (~δ,Cx([λn, xn], [λn−1, xn−1], . . . , λ1)) such
that:

PH(~δ,Cx([λn, xn], [λn−1, xn−1], . . . , λ1))

= PH(~β,Bi(λ1, λ2, . . . , λn)).

The vector ~x determining the Cox representation is de-
rived from vector ~β by:

xi = 1− βi

n
∏

j=i+1

1

xj

, for 2 ≤ i ≤ n. (2)

Example 1. Consider the APH representation depicted
in Fig. 1. The three non-absorbing states have exit rates
4, 3, and 1, respectively. Fig. 2(a) depicts the correspond-
ing ordered bidiagonal representation. The branching
structure of the original representation is now reflected
(though in a non-obvious way) by the initial probabil-
ity distribution of the ordered bidiagonal representation.
Fig. 2(b) depicts the corresponding Cox representation,
obtained from the ordered bidiagonal representation by
instantiating Equation (2).

Notably, both canonical forms are characterized by
2n−1 real parameters. For the ordered bidiagonal repre-
sentation, this is ~β (where the last value can be dropped

since
∑n

1 βi = 1) and ~λ, for the Cox representation, ~x

and ~λ.

2.3 Three Stochastic Operations

We now consider three very common and convenient op-
erations on continuous probability distributions. Let X1

and X2 be two independent random variables with dis-
tribution functions F1(t) and F2(t), respectively; and
let the random variables Xcon = X1 + X2, Xmax =
max{X1, X2}, and Xmin = min{X1, X2} be the sum-
mation (convolution), maximum, and minimum of X1

and X2, respectively. The random variables Xcon, Xmax,
and Xmin, by definition, have distribution functions
Fcon(t) =

∫ t

0 F1(t − x)F2(x)dx, Fmax(t) = F1(t)F2(t),
and Fmin(t) = 1− (1− F1(t))(1 − F2(t)), respectively.

Theorem 3. [20, Theorem 2.2.9] Let (~α,A) and (~β,B)
be the representations of PH distributions F (t) and G(t)
of size m and n, respectively. Then:

(a) their convolution con(F,G) is a PH distribution with

representation (~δ,D) of size m+ n, where:

~δ = [~α, αm+1
~β] and D =

[

A ~A~β

0 B

]

. (3)

(b) their minimum min(F,G) is a PH distribution with

representation (~δ,D) of size mn, where:1

~δ = ~α⊗ ~β and D = A⊕B. (4)

(c) their maximum max(F,G) is a PH distribution with

representation (~δ,D) of size mn+m+ n, where:

~δ =
[

~α⊗ ~β, βn+1~α, αm+1
~β

]

and

D =





A⊕B IA ⊗ ~B ~A⊗ IB
0 A 0
0 0 B



 . (5)

3 CCC Syntax and Semantics

In this section, we develop a simple yet convenient
stochastic delay calculus that we use to generate and
manipulate APH representations. We call the calculus
the Cox & Convenience Calculus or, for short, CCC.

A delay in our calculus reflects the completion time
of some activity. As basic building blocks we use ex-
ponential distributions. More complex delays are built
by composing basic delays using several operations. In
fact, a single operator is enough to obtain a complete-
ness result w.r.t. APH distributions. Further operators
are added for mere convenience. They correspond to the
operations discussed in Section 2.3.

The calculus is parsimonious in the sense that it has
no actions or synchronization mechanisms and no recur-
sion operation. CCC can easily be embedded in a stan-
dard process calculus providing these missing features.
For the setting considered here, all processes, from the
basic to the most complex, are acyclic, and just rep-
resent completion times of activities. The semantics of
CCC maps on absorbing CTMCs representing the APH
distributions that govern the completion times.

1 See Appendix A for the formal definition of Kronecker product
operator ⊗ and Kronecker sum operator ⊕.
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Cox. The simplest building block that can be expressed
in CCC is an exponentially distributed delay, expressed
simply by ‘λ’, with λ ∈ R+. The intended semantics is
an (unspecified) activity that induces a delay distributed
according to an exponential distribution with rate λ and
then terminates.

One of the advantages of the Cox representations is
the fact that each of them starts in a single state, which
is important in developing the delay calculus. Our delay
calculus will generate APH representations in Cox forms.

CCC allows us to generate the whole set of Cox rep-
resentations from the building blocks by using a single
additional operator,⊳, which is inspired by the disabling
operator, as found, for instance, in LOTOS [3]. Disabling
takes the form µ⊳ λ.P , where delay µ forces a preemp-
tive termination, unless delay λ finishes first. Concretely,
delay λ.P behaves as delay P after an exponentially dis-
tributed duration with rate λ. Now, µ and λ.P disable
each other, in the sense that the termination of delay µ

cancels delay λ.P and terminates, while the occurrence
of delay λ cancels delay µ and continues with delay P .
The implied semantics is a race between the two ex-
ponential distributions, and the time until the race is
determined therefore corresponds to an exponential dis-
tribution with rate µ+ λ.

Example 2. Consider the Cox representation depicted in
Fig. 2(c). In CCC, the Cox representation can be ex-
pressed by the following delay:

P =
5

4
⊳

11

4
.

(

14

11
⊳

19

11
.1

)

.

Convenience. The second part of the delay calculus is
the “convenience” part, namely the part that helps us
manipulate APH representations. In Section 2.3, we have
reviewed three common operations on APH representa-
tions. They constitute the construction means we cap-
ture by the calculus. We thus define three composition
operators to carry out these three operations, namely
sequential composition (;), parallel composition (‖), and
choice (⊕).

Here we exploit a natural correspondence between the
convolution of two APH distributions and the sequential
composition of their delays (;). Delay P ;Q describes the
sequential composition of delays P and Q in that partic-
ular order. This delay behaves as P until P terminates.
Upon the termination of P , it then behaves as Q. The
overall behavior of P ;Q is therefore determined by the
sum of the completion times of P and Q.

Similarly, the maximum of two PH distributions cor-
responds to the parallel composition (‖) of their delays.
This is rooted in the memoryless property of the under-
lying CTMCs, which makes it possible to use a simple
interleaving semantics of their delays. The precise corre-
spondence will be the subject of Theorem 6. Delay P‖Q
describes the parallel composition of delays P and Q.
This delay behaves as P and as Q, at the same time. For

the delay to terminate, both delays P and Q must ter-
minate. Hence, the completion time of delay P‖Q cor-
responds to the largest completion time of its compo-
nents. In other words, the overall behavior of P‖Q is
determined by the maximum of the completion times of
P and Q.

In Theorem 6, we will also show that the minimum
of two APH distribution corresponds to the choice ⊕ of
the two delays. The choice implements a race between
two delays which is decided only once the first delay ter-
minates. Delay P ⊕Q, describes the choice of delays P
and Q. This delay behaves either as P or asQ, whichever
terminates first. Since a delay describes its random com-
pletion time, we can think of delay P ⊕ Q as the race
between the two delays: whichever has the least comple-
tion time wins. Therefore, when either of them termi-
nates, the delay itself terminates. The overall behavior
of P ⊕ Q is then determined by the minimum of the
completion times of P and Q.

Syntax. Each term built according to the following
grammar is a CCC delay:

P ::= λ | µ⊳λ.P | P ;P | P ⊕P | P‖P

where λ ∈ R+ and µ ∈ R≥0 are rates. We use
P, P1, P2, . . . , P

′, Q,R, . . . to range over delays, and
λ, λ1, λ2, . . . , µ, ν, . . . to range over rates.

We fix the precedence of the operators in the lan-
guage as follows: disabling (⊳), sequential (;), choice (⊕),
and parallel (‖) operators. Thus, the disabling opera-
tor takes precedence over sequential, choice, and paral-
lel operators, sequential operator takes precedence over
choice and parallel operators, and so on. To circumvent
these default precedence rules, we may use parentheses.
Furthermore, the operators described above are binary
operators. Unparenthesized repeated applications of the
same operator are assumed to have a left-associative
evaluation order: P‖Q‖R is evaluated as (P‖Q)‖R.

Semantics. The semantics of CCC is remarkably sim-
ple. As for many stochastic process calculi [15,14,2,26],
it comes in two stages. In the first stage, the entire lan-
guage is mapped onto an acyclic labelled transition sys-
tem in the style of decorated transition semantics in-
spired by [14,26], while the second stage interprets this
as an absorbing CTMC. We could have opted for a direct
semantics, harvesting work on concise stochastic calculi
semantics [17,21,6].

MTS Semantics. Let Lab be the set of strings defined
by the grammar:

w ::= ε | ⊳l .w | ⊳r .w | ⊕l .w | ⊕r .w | ‖l.w | ‖r.w

where ε is the empty string, and ‘.’ is the string concate-
nation operator. The subscripts l and r stand for left and
right, respectively. The strings will be used to differen-
tiate different transitions having the same rate between
two processes.
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Table 1. Structural operational semantics for CCC

(0) •‖• ≡ • (1)
λ

λ,ε−−−→•

(2.a)
µ⊳ λ.P

µ,⊳l−−−−→•
(2.b)

µ⊳ λ.P λ,⊳r−−−−→P

(3.a)
P λ,w−−−→P ′

P ;Q λ,w−−−→P ′;Q
(P ′ 6= •) (3.b)

P λ,w−−−→•

P ;Q λ,w−−−→Q

(4.a)
P λ,w−−−→P ′

P ⊕Q
λ,⊕l.w−−−−−→P ′ ⊕Q

(P ′ 6= •) (4.b)
P λ,w−−−→•

P ⊕Q
λ,⊕l.w−−−−−→•

(4.c)
Q λ,w−−−→Q′

P ⊕Q λ,⊕r.w−−−−−→P ⊕Q′
(Q′ 6= •) (4.d)

Q λ,w−−−→•

P ⊕Q λ,⊕r.w−−−−−→•

(5.a)
P λ,w−−−→P ′

P‖Q λ,‖l.w−−−−−→P ′‖Q
(5.b)

Q λ,w−−−→Q′

P‖Q λ,‖r.w−−−−−→P‖Q′

A Markov Transition System (MTS) is a tuple M =
(CCC, P0,−→), where:

– CCC is the set of all CCC delays,
– P0 is the initial delay, and
– −→⊆ (CCC× (R+×Lab)×CCC) is the least relation

satisfying the derivation rules listed in Table 1.

The expression • in Table 1, is a terminal symbol
describing a terminated behavior. As a process, • does
nothing. Notably, • is not part of the CCC syntax, which
corresponds to our restriction to non-defective distribu-
tions.

An element of the set −→ is called a transition. The
transitions among processes are obtained by applying
the given set of the derivation rules. For reading conve-

nience, we write P λ,w−−−→Q to denote the existence of a
transition from state P to Q with rate λ and label w,
instead of (P, (λ,w), Q) ∈−→.

The formal (first stage) semantics of language CCC

is given in the style of Structural Operational Seman-
tics (SOS) [25,1]. The intuitive interpretation described
before is formalized by means of SOS derivation rules
depicted in the table. Among the SOS rules of language
CCC listed in Table 1 are three axioms, namely rules (1),
(2.a), and (2.b). Axiom (2.a) specifies that for all pro-

cesses of the form µ ⊳ λ.P , transition µ ⊳ λ.P µ,⊳l−−−−→•
is valid. The remaining rules in the table are deriva-
tion rules; take for instance rule (4.a). This rule states
that given that process P ′ is not equal to •, whenever

P
λ,w−−−→P ′ is a valid transition, then so is the transition

P ⊕ Q λ,⊕l.w−−−−−→P ′ ⊕ Q. The other rules are interpreted
in a similar fashion.

Each transition in an MTS has two labels: the rate
of the corresponding transition and an additional label.
The additional label is necessary to allow us to differen-
tiate transitions that otherwise would be indistinguish-
able, namely to explicitly produce different transitions if

there exist different derivations with the same rate be-
tween two processes. For instance, the process λ⊕µ has
two transitions to process •, one with rate λ and the
other with rate µ. In this case, the additional label is
not required. However, in the case of a process of the
form λ ⊕ λ, the additional label is necessary to uphold
that there are indeed two different derivations for rate
λ, namely the transitions:

λ⊕ λ
λ,⊕l−−−−→• and λ⊕ λ

λ,⊕r−−−−→•.

This technical means to overcome the restriction of mul-
tiple transitions with the same rate (or in other contexts,
action or label) between any two processes was first de-
scribed in [4], and has been widely used, for instance
in [14].

In addition to the operational semantic rules, a single
structural congruence rule is required. Structural con-
gruences are common, for instance, in π-calculus [19]
variations. The structural congruence rule is:

•‖• ≡ •. (6)

This rule allows us to collect terminated delays. It is
essential for a proper functioning of rules (3.b), (4.b),
and (4.d), and the second-stage semantics.

Reachability. Reachability is defined as usual: A finite
path σ of length n ∈ Z≥0 from P0 in M is an alternating
sequence of delays and labels:

P0(λ1, w1)P1(λ2, w2)P2 . . . Pn−1(λn, wn)Pn,

such that, for all 1 ≤ i ≤ n, Pi−1
λi,wi−−−−→Pi. The path

ends in delay Pn. A path σ′ = P0 is of length 0; starts
from P0 and ends in P0. A finite path is maximal if
it is not a proper prefix of another finite path. A delay
P ′ ∈ CCC is reachable from P ∈ CCC, if there is n ∈ Z≥0

and a path σ of length n such that P0 = P and Pn = P ′.
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P1 •

(λ1)⊕ (λ2)

λ1,⊕l

λ1,⊕r

λ1,⊕l

λ2,⊕r

(a)

P2 •
λ3, ε

(b)

P3 (λ5) •
λ4, ε λ5, ε

(c)

Fig. 3. The MTS semantics of (a) P1, (b) λ3 and (c) λ4;λ5

If delay P ′ is reachable from delay P we write P =⇒ P ′.
We use Reach(P ) to denote the set of all those delays in
CCC that are reachable from P , i.e., Reach(P ) = {P ′ ∈
CCC | P =⇒ P ′}.

Example 3. Consider a delay P ∈ CCC defined as P =
P1;λ3‖λ4;λ5, where P1 = λ1 ⊕ λ1;λ2. Delay P is the
parallel composition of two sequentially composed de-
lays. Fig. 3 depicts the semantics of P1 and the other
component delays. The semantics of delay P is depicted
in Fig. 4. Both Fig. 3 and Fig. 4 depict only the reachable
fragments of each delay.

Absorbing CTMC Semantics. In the second stage of the
semantics, we define an interpretation of the MTS we ob-
tained in the first stage in terms of an absorbing CTMC.
This is achieved by a function γ : (CCC × CCC) → R≥0

that accumulates the rate of all transitions between two
delays in the MTS:

γ(P,Q) =
∑

(λ,w)∈{(λ,w)|P
λ,w−−−→Q}

λ.

Function γ is necessary because the operational seman-
tics may justify more than one transition between two
distinct delays, in contrast to a CTMC.

The absorbing CTMC semantics of a delay P ∈ CCC,
with MTS semantics (CCC, P,−→), is MP = (S,Q, ~π),
where:

– the state space S = Reach(P ),
– the infinitesimal generator matrixQ(P,Q) = γ(P,Q)

if P 6= Q and −
∑

R 6=P Q(P,R) if P = Q, and
– the initial probability distribution ~π is a Dirac initial

distribution to delay P .

Once we have the semantics of a CCC delay in terms of
an MTS, we can map the obtained MTS onto an absorb-
ing CTMC. While the MTSMP associated with a CCC

delay is uncountably large, the size of the state space of
MP is |Reach(P )|.

Example 4. Continuing from Example 3, the absorbing
CTMC semantics of the MTS depicted in Fig. 4 is shown
in Fig. 5. For reading convenience, we have renamed all
reachable MTS delays in the CTMC figure, while keeping
their relative position.

1 3 4
λ1 λ3

5 7 8
λ1 λ3

9 11
λ1 λ3

λ4

λ5

λ4

λ5

λ4

λ5

2

6

10

λ4

λ5

λ1
λ1 + λ2

λ1
λ1 + λ2

λ1
λ1 + λ2

Fig. 5. The absorbing CTMC semantics of delay P1.P2‖P3

Delays and PH Distributions. We now discuss whether,
as we would expect, the CTMC semantics of any delay
P ∈ CCC always represents an APH distribution, and
vice versa. The following lemmas are easily established
by structural induction.

Lemma 1. For every P ∈ CCC:

1. P =⇒ •,
2. |Reach(P )| is finite,
3. all maximal paths from P end in •, and
4. there is an upper bound on the length of any path

from P .

The proof of Lemma 1.3 makes use of the structural
congruence (Equation. (6)), and the observation that
operator ‖ is the only static operator of the calculus.
Lemma 1.4 ensures that indeed there is no infinite path
in the semantics of the language. Altogether, these lem-
mas allow us to establish that CCC is indeed a calculus
for APH distributions.

Theorem 4. For every P ∈ CCC,MP = (S,Q, ~π) is a
CTMC underlying an acyclic phase-type representation
with a Dirac initial distribution.

So we can identify any CCC delay P with the PH
distribution associated withMP , from now on denoted
PH(P ). While this theorem can be seen as a closure prop-
erty of the calculus, the following theorem provides a
completeness result, namely that any APH distribution
can be generated by CCC.

Theorem 5. For any acyclic phase-type distribution
APH there is a delay P such that APH = PH(P ).

Proof. We can transform the APH representation as-
sociated with any such APH to a Cox form by using
the spectral polynomial algorithm (see Section 2.2) and
Theorem 2. Our restriction to non-defective distributions
will be inherited by the Cox representation which thus
has a Dirac initial distribution to the highest rated state.
It is now straightforward to encode the bidiagonal struc-
ture of the Cox representation into a right-bracketed
nesting of disabling-operators ⊳ and a terminating rate.
⊓⊔
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P1; λ3‖λ4;λ5 λ3‖λ4;λ5 •‖λ4;λ5

λ1, ‖l.⊕l λ3, ‖l

P1;λ3‖λ5 λ3‖λ5 •‖λ5

λ1, ‖l.⊕l λ3, ‖l

P1;λ3‖• λ3‖• •
λ1, ‖l.⊕l λ3, ‖l

λ4, ‖r

λ5, ‖r

λ4, ‖r

λ5, ‖r

λ4, ‖r

λ5, ‖r

(λ1 ⊕ λ2);λ3‖λ4;λ5

(λ1 ⊕ λ2);λ3‖λ5

(λ1 ⊕ λ2);λ3‖•

λ4, ‖r

λ5, ‖r

λ1, ‖l.⊕r λ1, ‖l.⊕l

λ2, ‖l.⊕r

λ1, ‖l.⊕r λ1, ‖l.⊕l

λ2, ‖l.⊕r

λ1, ‖l.⊕r λ1, ‖l.⊕l

λ2, ‖l.⊕r

Fig. 4. The MTS semantics of P1;λ3‖λ4;λ5

An illustrative example of the last step has been given
in Example 2. So, in fact the disabling operator ⊳ (plus
one terminating rate) is enough to encode any APH dis-
tribution into CCC. Dropping the operator ⊳ from the
calculus renders the above result impossible. The other
binary operators of the CCC are added for convenience;
they do not enhance expressive power. In the following,
we verify that their intuitive interpretation is matched
by the semantics.

Theorem 6. For all delays P,Q ∈ CCC:

1. con(PH(P ),PH(Q)) = PH(P ;Q),
2. min(PH(P ),PH(Q)) = PH(P ⊕Q), and
3. max(PH(P ),PH(Q)) = PH(P‖Q).

The proof of Theorem 6 can be found in Appendix
B.3 of [27]. This theorem induces a sound denotational
semantics for CCC by the clauses in Theorem 3 for con(),
max(), and min(), together with setting the denotational
semantics of µ ⊳ λ.P to APH representation (~e2,A2),
such that:

A2 =

[

−(µ+ λ) λ~e1
~0 A1

]

,

whereA1 is the PH-generator of the denotational seman-
tics of P , and ~e1 and ~e2 are row vectors of appropriate
dimensions representing Dirac initial distributions to the
first component.

4 Minimality by Construction

While CCC provides expressive and convenient means to
describe delay distributions, we are in practice often fac-
ing an explosion in size, especially rooted in the seman-
tics of maximum (‖) and minimum (⊕) (regardless of
whether we use denotational or operational semantics).
They grow as the product of their component sizes, while
the convolution (;) grows as their sum. This phenomenon
is not uncommon especially for concurrent system rep-
resentations. Luckily, we can equip CCC with effective
means to compress the resulting sizes considerably in
almost all cases. This is rooted in a polynomial-time al-
gorithm [29] that reduces the size of any component CCC
delay.

Given an arbitrary APH representation (~α,A) as in-
put, the algorithm returns an ordered bidiagonal repre-
sentation, denoted Red(~α,A), having the same PH dis-
tribution, with a representation size being at most the
size of the original one. The reduction achievable goes
beyond concepts like lumpability [5], since the algorithm
exploits properties of the Laplace-Stieltjes transform. In
very brief terms, the algorithm checks, for each matrix
row and column, certain dependencies in the matrix of
its ordered bidiagonal representation of the distribution
(obtained by running the SPA algorithm a priori). These
dependencies are expressible in terms of linear equation
systems. If satisfied, a state can be identified as being
removable, and is subsequently removed from the repre-
sentation. This process is then iterated until no further
state is identified as being removable.
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Algorithm 1

1: function RedAcycRep(~α,A)

2: (~β,Bi)← Spa(~α,A)

3: n← SizeOf(~β,Bi)
4: i← 2
5: while i ≤ n do

6: if Removable(i, (~β,Bi)) then

7: (~β,Bi)← Remove(i, (~β,Bi))
8: n← n− 1
9: else

10: i← i+ 1
11: end if

12: end while

13: return (~β,Bi)
14: end function

Algorithm 1 takes as input an acyclic PH representa-
tion, and outputs its reduced ordered bidiagonal rep-
resentation. Function Spa(·), in the algorithm, trans-
forms an acyclic PH representation to its ordered bidi-
agonal representation using the spectral polynomial al-
gorithm [11]. Function SizeOf(·) returns the size of the
given representation. Function Removable(·) and func-
tion Remove(·) check for each state whether it is remov-
able, and if so, remove it from the representation.

To give some insight into how they work, we recall
that the Laplace-Stieltjes transform (cf. Equation (1)) of
an exponential distribution with rate λ is F̃ (s) = λ

s+λ
.

Let L(λ) = s+λ
λ

, i.e., the reciprocal of the LST of the
exponential distribution. We call a single expression of
L(·) an L-term. The LST of an ordered bidiagonal rep-

resentation (~β,Bi(λ1, λ2, . . . , λn)) can then be written
as:

F̃ (s) =
~β1

L(λ1) . . . L(λn)
+

~β2

L(λ2) . . . L(λn)
+ . . .+

~βn

L(λn)

=
~β1 + ~β2L(λ1) + . . .+ ~βnL(λ1)L(λ2) . . . L(λn−1)

L(λ1)L(λ2) . . . L(λn)
.

(7)

Note that the LST expression in Equation (7) may
not be in irreducible ratio form. The LST is produced
in such a way that the denominator polynomial corre-
sponds exactly to the sequence of the total outgoing rates
of the ordered bidiagonal representation. Hence, the de-
gree of the denominator polynomial is equal to the size
of the ordered bidiagonal representation. Observing the
equation, we see that in order to remove a state from
the ordered bidiagonal representation, we have to find a
common L-term in both the numerator and denomina-
tor polynomials. Removing such a common L-term from
the numerator and denominator polynomials means re-
moving the corresponding state from the representation.
However, such a removal of a state can only be carried
out if after the removal, the initial probability distri-
bution ~β is redistributed in a correct way. This means

the new initial probability distribution, say ~δ, must be a
sub-stochastic vector.

Thus in order to reduce the size of an ordered bidi-
agonal representation, we need to check two conditions,
namely the divisibility of the numerator polynomial and
the sub-stochasticity of the resulting initial probability
vector. For this, we let R(s) denote the numerator poly-
nomial of the LST in Equation (7):

R(s) = ~β1 + ~β2L(λ1) + . . .+ ~βnL(λ1) . . . L(λn−1).

The root of an L-term L(λi) is −λi. Hence, polynomial
R(s) is divisible by L(λi) if one of the roots of R(s) is
also −λi, or simply if R(−λi) = 0. This is what function
Removable(·) in Algorithm 1 checks, it returns True

if and only if R(−λi) = 0.
Now, assume that R(−λi) = 0 and, for brevity of

presentation, let Bi1 := Bi(λ1, . . . , λn) and Bi2 :=
Bi(λ1, . . . , λi−1, λi+1, . . . , λn). We thus are looking for

vector ~δ satisfying:

PH(~δ,Bi2) = PH(~β,Bi1).

or equivalently:

~δexp(Bi2t)~1 = ~βexp(Bi1t)~1, t ≥ 0.

To obtain ~δ from ~β, n − 1 equations relating their
components are needed. For this, one might think of
evaluating the last equation at n − 1 different t values
to obtain a system of equations determining ~δ. But this
way is not recommendable, since it involves matrix ex-
ponentiations. Instead we look at the derivatives of the
distribution functions: For a PH representation (~α,A)
and j ≥ 0, the j-th derivative is:

dj

dtj
F (t) = −~αAjexp(At)~1,

Evaluating these derivatives at t = 0 allows us to avoid
computing the exponential of matrices. Hence, vector ~δ
can be computed by solving:

~δBij2~1 = ~βBij1~1, 0 ≤ j ≤ n− 2. (8)

Once this system of equations is solved, the sub-
stochasticity of vector ~δ can be determined simply by
verifying that all of its entries are nonnegative real num-
bers. Function Remove(·) in Algorithm 1 performs this
computation.

In fact, the bidiagonality of the matrices allows fur-
ther optimisations. We observe that for any bidiagonal
PH-generator of dimension d, Bi[si, si] = −Bi[si, si+1],
for 1 ≤ i < d. Since both PH-generators in the system
of equations are bidiagonal, we can prove the following
lemma.

Lemma 2. Equations (8) can be transformed into:

A[δ1, . . . , δi−1]
⊤ = ~b, (9)

where A is an upper triangular matrix of dimension i−1.



10 Reza Pulungan, Holger Hermanns: Construction and Minimization for Continuous Probability Distributions

We have mentioned that the complexity of Spa(·) is
O(n3). Function Removable(·) can be performed with
linear complexity, while constructing the system of linear
equations (cf. Equation (9)) and solving it in function
Remove(·) has complexity O(n3).

Overall, the algorithm has complexity O(n3), where
n is the number of states of the original representation.
It can be applied to arbitrary APH distributions, and
hence to arbitrary CCC delays or their constituents. In
fact, this can turn an exponential growth (in the num-
ber of composed components) of the matrix size into a
linear growth, as we will demonstrate in the case study
section. However, the algorithm is not guaranteed to pro-
duce minimal PH representations [29]. But it does so if
the distribution is acyclic ideal. Recall that an acyclic-
ideal PH distribution has an acyclic order that equals its
algebraic degree.

Lemma 3. [29, Lemma 10] Let (~α,A) be an APH
representation and PH(~α,A) acyclic ideal. The size of
Red(~α,A) is equal to the algebraic degree of PH(~α,A).

So, if we are able to stay inside the acyclic-ideal sub-
set of APH distributions, we can always apply Red(.)
and thereby keep the representation minimal. Thus, we
are left with the problem to understand how likely it is
that we are dealing with acyclic-ideal distributions when
juggling with the CCC calculus.

We first provide partial answers: Exponential and Er-
lang distributions are acyclic ideal. The convolution,
maximum, and minimum of Erlang distributions are
acyclic ideal [28]. In full generality however, the binary
operators of CCC do not, but do almost always, preserve
acyclic ideality.

Theorem 7. [29, Lemma 14] Convolution, maximum,
and minimum operations are acyclic-ideal preserving al-
most everywhere.

Thus, given two arbitrary acyclic-ideal APH distri-
butions, regardless of the size of their representations,
we cannot be certain, but can be almost certain that
the APH distribution of their convolution, maximum, or
minimum is also acyclic ideal, and hence is reducible to
minimal size, by applying Red(.). We are almost certain,
in the sense that, the measure of the set of acyclic-ideal
distributions, where the resulting APH representation
of the convolution, maximum, or minimum is not re-
ducible to minimal size, is zero. Notably, Red(.) is always
guaranteed to reduce a given acyclic representation to a
minimal acyclic representation, still there is a marginal
chance that smaller cyclic representations exist.

Given a process P ∈ CCC, Algorithm 1 can be used
to minimize the state space of its associated APH rep-
resentation. The algorithm works on the corresponding
ordered bidiagonal representation. Once this representa-
tion is obtained, we can transform it to its Cox represen-
tation. This Cox representation basically forms a process

parser

op aph erl

acyclic bidiagonal cox

expression

.tra file

or

.cox file

Fig. 6. Architecture of APHMIN

Red(P ) ∈ CCC, the minimized process of P . Now, the
following lemma is straightforward.

Lemma 4. For all processes P ∈ CCC, PH(Red(P )) =
PH(P ).

Hence, Algorithm 1 can be used to minimize the size
of processes in each composition step. By Theorem 7, the
application of the convolution, minimum, or maximum
operations on APH representations when accompanied
by the minimization algorithm produces representations
that are almost surely minimal. Therefore, the minimiza-
tion algorithm can be used to keep the processes ob-
tained after sequential, choice, and parallel compositions
almost surely minimal.

5 Tool Implementation

This section describes the software service wrapping the
CCC calculus and the minimization engine.

Overview and Implementation. We have implemented
CCC as a means to compose, generate and manipulate
APH representations, together with the minimization al-
gorithm in a toolsuite called APHMIN. Fig. 6 depicts the
architecture of the tool. APHMIN accepts as input any
expression written in a prefix-notation version of CCC,
and returns a .tra or .cox file containing the resulting
minimized APH representation. The expression follows
the grammar:

P ::= exp(λ) | cox(µ, λ, P ) | con(P, P ) | min(P, P )

| max(P, P ) | erl(n, λ).

The correspondence between this grammar and the
original CCC grammar is straightforward, with cox() rep-
resenting ⊳. For enhanced convenience in building basic
delays, we have added erl(n, λ) to generate an Erlang
distribution of shape n and rate λ (expressible in CCC

by n-fold sequential composition of rate λ).
APHMIN is assembled from four components: parser,

erl, op, and aph. Component parser parses the input ex-
pression and invokes erl, op, and aph to evaluate the
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Fig. 7. The web-based interface of APHMIN

expression. Component erl is used to generate basic dis-
tributions: exponential and Erlang. Component op im-
plements the disabling operator together with the three
stochastic operations on two given APH representations.
Component aph implements the minimization algorithm
as well as transformations amongst the various forms of
representations—acyclic, bidiagonal, and Cox. After ex-
ecuting an operation, op always calls aph to minimize the
result of the operation. The last three components use
.tra files as inputs and outputs. They also make use of
three sparse-matrix-like data structures—acyclic, bidi-
agonal, and Cox—to store APH representations in vari-
ous forms. The toolsuite is written in C and C++.

The toolsuite is wrapped in a simple web service,
which supports only a single operation called aphmin,
and deployed using the SOAP 1.1 protocol over HTTP.
The request to the service takes a string containing the
expression to be parsed by APHMIN, a string containing
an email address to which the result will be sent if the
user so wishes, and a string indicating the prefered for-
mat of the output—“tra” (as simple list of transitions)
or “cox” (in Cox form as nested disabling operators).

The latter format adheres to the above grammar, and
hence enables direct cut-and-paste reuse of the tool out-
put as part of a larger CCC expression. The response
of the service consists of a float number representing
the computation time required by APHMIN to produce
the final result, two integer numbers representing the
non-minimized size (which can be calculated by repeated
uses of Theorem 3) and the actual minimized size of the
resulting APH representation, and a string containing
the final APH representation in the form chosen. The
WSDL definition of the service can be found at http:

//ada.cs.uni-saarland.de/aphminserver.php?wsdl

Look and Feel. For the end user, we have wrapped the
APHMIN web service into a web-based interface invok-
ing the service. We use a web service and a web-based
interface to ease first experimental evaluations of the
approach without installation overhead. After positive
evaluation, the tool is made available in binary form
upon request to academic users. The interface (Fig. 7)
comprises a form field where the user is expected to
provide a CCC expression, the output format prefer-
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Fig. 8. (a) Three processors, two memories, and a bus (3P2M)
model. (b) The fault tree of the 3P2M model

ence, and an email address. The response of the ser-
vice will be displayed on the same page. Beside the re-
sulting APH representation, the user also receives infor-
mation about the computation time required and the
sizes of non-minimized and minimized APH represen-
tation. The web-based interface is available at http:

//depend.cs.uni-saarland.de/tools/aphmin

6 Case Study.

We now illustrate the convenience and the effective-
ness of the proposed approach by means of an exem-
plary case study. The size of the case to be discussed
is far out of reach of traditional approaches to numeri-
cal Markov model analysis. We however circumvent the
state space explosion via a minimality-by-construction
approach rooted in APHMIN.

As a case study, we analyze the reliability of a
processors-and-memories (3P2M) system modelled by a
static fault tree [12,10]. Fig. 8(a) depicts a high-level
view of the system. It consists of three identical pro-
cessors (P1–P3) and two identical memory modules (M1
and M2), all connected by a bus (B). The processors and
the memory modules work independently of each other.
All components, including the bus, have a limited life-
time, and so they may fail. The lifetime, and hence the
time to failure of each component is governed by a con-
tinuous probability distribution. The system fails when
either all processors fail or all memory modules fail or
the bus fails.

The fault tree model of the 3P2M system is shown
in Fig. 8(b). A fault tree model consists of basic events
and gates. A basic event represents the failure of some
basic, indivisible component, while a gate determines the
relationship and interdependency between basic events.
In standard fault trees, there are three types of gates:
OR, AND, and VOTING gates. The OR and AND gates
are the standard logic gates.

There is a striking relation between CCC and fault
trees: If considering the timed interpretation of static
fault trees, OR and AND gates correspond exactly to
the minimum and maximum operators on the time to
failure distributions of the components [31], and hence

they also correspond to the choice (⊕) and the parallel
(‖) operators of CCC, respectively.

Let Pi denote a CCC delay describing the time to fail-
ure of processor Pi, for i = 1, 2, 3. Further, let Mi be
a CCC delay describing the time to failure of memory
module Mi, for i = 1, 2, and similarly with B, the de-
lay describing the time to failure of the bus B. Then the
fault tree model in Fig. 8(b) can be expressed by the
following CCC delay:

(P1‖P2‖P3)⊕ (M1‖M2)⊕B. (10)

In the analysis of the reliability of the 3P2M fault tree
model, we perform several experiments. In each experi-
ment, the time to failure of each component is governed
by Erlang distributions of a particular shape. The mean
value of the Erlang distributions governing each compo-
nent, however, is kept constant across the experiments,
which means that the rates are adjusted accordingly. The
mean failure times of each processor, each memory, and
the bus are set to 5, 3.33, and 7.14 years, respectively.
The first three columns of Table 2 list the parameters of
the Erlang distributions used in the experiments.

Columns 4–6 of Table 2 summarize the results of the
experiments. We present six model instances, where we
vary the shapes of the Erlang distributions governing the
basic events, ranging from 1, namely exponential distri-
butions, to 100. The fourth column of the table (Origi-
nal) provides the size of the APH representations when
they are generated without any size reduction whatso-
ever. The fifth column (Inter.) corresponds to the size of
the largest intermediate APH representations the reduc-
tion algorithm encounters while minimizing each of the
model instances. Recall that after carrying out each op-
eration in Equation (10), the reduction algorithm can be
used to reduce the resulting intermediate model (by cut-
and-paste, if using the web interface). In this way, the
size of the results of subsequent operations can be kept
small. The state spaces shown in the column are usu-
ally the intermediate results prior to the last operation,
which in this case is the last choice operation. The sixth
column (Final) corresponds to the size of the final APH
representations. Compared to the original state spaces,
the size of the final state spaces is orders of magnitude
smaller. While the size of an original model grows mul-
tiplicatively in the sizes of its components, the size of a
reduced representation grows additively in the sizes of
its components.

The last three columns of Table 2 present details
on the computation times for the models. They range
from milliseconds for the smallest models to more than
60 hours for the largest ones. While this seems like an
unattractively long computation time, it should be noted
that the original model is far out of reach of any explicit
state numerical analysis engine, while the final model is
truly small. So, patience does pay off. In general, the
computation time is dominated by the SPA algorithm,
taking more than 95% of the total time.
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Table 2. Model parameters and state space reductions for the 3P2M models

Processors Memories Bus State Space Comp. Time (sec.)
Original Inter. Final SPA Red. Proc.

exp(0.2) exp(0.3) exp(0.14) 21 6 6 < 1 < 1 < 1
erl(5, 1) erl(5, 1.5) erl(5, 0.7) 37625 450 114 < 1 < 1 < 1
erl(10, 2) erl(10, 3) erl(10, 1.4) 1596000 1950 249 4 18 < 1
erl(20, 4) erl(20, 6) erl(20, 2.8) 81488000 8100 519 35 265 1
erl(50, 10) erl(50, 15) erl(50, 7) > 1.72 · 1010 51750 1329 10999 800 16
erl(100, 20) erl(100, 30) erl(100, 14) > 1.05 · 1012 208500 2679 219180 10086 98

7 Concluding Remarks

The paper has introduced a web service that combines
an expressive and convenient approach to generate ar-
bitrary continuous probability distributions with a way
to represent the result in the most concise way—almost
surely. The web service is based on a calculus of APH dis-
tributed delays, CCC. Though this calculus lacks means
for interaction and recursion, these can be adapted from
other calculi as desired. Another option is to keep CCC

separated, but to use the APHMIN web service to ar-
rive at the (almost surely) most concise representation
of an APH distributed delay of interest. The result can
indeed be imported (by encoding the absorbing CTMC)
into any modelling tool supporting exponential distribu-
tions, ranging from stochastic π-calculus or Petri nets,
to PEPA or IMC, and even to UPPAAL with stochastic
semantics.
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A Kronecker Product and Kronecker Sum

Let A be an k × l matrix and B be an m × n matrix.
Then the Kronecker product A⊗B is an km× ln matrix
given by:

A⊗B =











a1,1B a1,2B · · · a1,lB
a2,1B a2,2B · · · a2,lB

...
...

. . .
...

ak,1B ak,2B · · · ak,lB











.

If A is an m ×m matrix and B is an n × n matrix,
then the Kronecker sum A ⊕ B is an mn ×mn matrix
given by:

A⊕B = A⊗ In + Im ⊗B,

where Ik denotes the k × k identity matrix.


