
Compositional Verification and Optimization
of Interactive Markov Chains?

Holger Hermanns1, Jan Krčál2, and Jan Křet́ınský2,3

1 Saarland University – Computer Science, Saarbrücken, Germany
2 Faculty of Informatics, Masaryk University, Czech Republic

3 Institut für Informatik, Technical University Munich, Germany

Abstract. Interactive Markov chains (IMC) are compositional behavioural
models extending labelled transition systems and continuous-time Markov
chains. We provide a framework and algorithms for compositional veri-
fication and optimization of IMC with respect to time-bounded proper-
ties. Firstly, we give a specification formalism for IMC. Secondly, given
a time-bounded property, an IMC component and the assumption that
its unknown environment satisfies a given specification, we synthesize a
scheduler for the component optimizing the probability that the property
is satisfied in any such environment.

1 Introduction

The ever increasing complexity and size of systems together with software reuse
strategies naturally enforce the need for component based system development.
For the same reasons, checking reliability and optimizing performance of such
systems needs to be done in a compositional way. The task is to get useful
guarantees on the behaviour of a component of a larger system. The key idea
is to incorporate assumptions on the rest of the system into the verification
process. This assume-guarantee reasoning is arguably a successful divide-and-
conquer technique in many contexts [?,?,?].

In this work, we consider a continuous-time stochastic model called interac-
tive Markov chains (IMC). First, we give a language for expressing assumptions
about IMC. Second, given an IMC, an assumption on its environment and a
property of interest, we synthesize a controller of the IMC that optimizes the
guarantee, and we compute this optimal guarantee, too.

Interactive Markov chains are behavioural models of probabilistic sys-
tems running in continuous real time appropriate for the component-based ap-
proach [?]. IMC have a well-understood compositional theory rooted in process
algebra, and are in use as semantic backbones for dynamic fault trees, archi-
tectural description languages, generalized stochastic Petri nets and Statemate
extensions, see [?] for a survey. IMC are applied in a large spectrum of practical
applications, ranging from water treatment facilities [?] to ultra-modern satellite
designs [?].

? The work has received support from the Czech Science Foundation, project
No. P202/12/G061, from the German Science Foundation DFG as part of
SFB/TR 14 AVACS, and by the EU FP7 Programme under grant agreement no.
295261 (MEALS) and 318490 (SENSATION).

init s

u

v goal

a

ττ 2

1
3

IMC arise from classical labelled transition systems by
incorporating the possibility to change state according to
a random delay governed by a negative exponential distri-
bution with a given rate, see transitions labelled 1, 2 and
3 in the figure. Apart from delay expirations, state transi-
tions may be triggered by the execution of internal (τ) actions or external (syn-
chronization) actions. Internal actions are assumed to happen instantaneously
and therefore take precedence over delay transitions. External actions are the
process algebraic means for interaction with other components, see a in the fig-
ure. By dropping the delay transitions, labelled transition systems are regained
in their entirety. Dropping action-labelled transitions instead yields continuous-
time Markov chains – one of the most used performance and reliability models.

The fundamental problem in the analysis of IMC is that of time-bounded
reachability. It is the problem to approximate the probability that a given set of
states is reached within a given deadline. We illustrate the compositional setting
of this problem in the following examples.

Examples. In the first example, consider the IMC C from above and an
unknown environment E with no assumptions. Either E is initially not ready to
synchronize on the external action a and thus one of the internal actions is taken,
or E is willing to synchronize on a at the beginning. In the latter case, whether
τ or a happens is resolved non-deterministically. Since this is out of control of
C, we must assume the worst case and let the environment decide which of the
two options will happen. For more details on this design choice, see [?]. If there
is synchronization on a, the probability to reach goal within time t = 1.5 is
1 − e−2t ≈ 0.95. Otherwise, C is given the choice to move to u or v. Naturally,
v is the choice maximizing the chance to get to goal on time as it has a higher
rate associated. In this case the probability amounts to 1− e−3t ≈ 0.99, while if
u were chosen, it would be only 0.78. Altogether, the guaranteed probability is
95% and the strategy of C is to choose v in init .

init proc ret goal
req τ resp

τ

The example depicted on the right
illustrates the necessity of assump-
tions on the environment: As it is, the
environment can drive the component
to state ret and let it get stuck there by not synchronising on resp ever. Hence
no better guarantee than 0 can be derived. However, this changes if we know
some specifics about the behaviour of the environment: Let us assume that we
know that once synchronization on req occurs, the environment must be ready
to synchronise on resp within some random time according to, say, an exponen-
tial distribution with rate 2. Under this assumption, we are able to derive a
guarantee of 95%, just as in the previous example.

Observe the form of the time constraint we imposed in the last example:
“within a random time distributed according to Exp(2)” or symbolically ♦≤Exp(2)ϕ.
We call this a continuous time constraint. If a part of the environment is e.g. a
model of a communication network, it is clear we cannot impose hard bounds
(discrete time constraints) such as “within 1.5” as in e.g. a formula of MTL

2

♦≤1.5ϕ. Folklore tells us that messages might get delayed for longer than that.
Yet we want to express high assurance that they arrive on time. In this case
one might use e.g. a formula of CSL Pr≥0.95(♦≤1.5ϕ). However, consider now a
system with two transitions labelled with resp in a row. Then this CSL formula
yields only a zero guarantee. By splitting the time 1.5 in halves, the respective
Pr≥0.77(♦≤0.75ϕ) yields only the guarantee 0.772 = 0.60. The actual guarantee
0.80 is given by the convolution of the two exponential distributions and as such
can be exactly obtained from our continuous time constraint ♦≤Exp(2)ϕ.

Our contribution is the following:

1. We introduce a specification formalism to express assumptions on continuous-
time stochastic systems. The novel feature of the formalism are the continu-
ous time constraints, which are vital for getting guarantees with respect to
time-bounded reachability in IMC.

2. We incorporate the assume-guarantee reasoning to the IMC framework. We
show how to synthesize ε-optimal schedulers for IMC in an unknown en-
vironment satisfying a given specification and approximate the respective
guarantee.

In our recent work [?] we considered a very restricted setting of the second
point. Firstly, we considered no assumptions on the environment as the environ-
ment of a component might be entirely unknown in many scenarios. Secondly,
we were restricted to IMC that never enable internal and external transitions at
the same state. This was also a severe limitation as this property is not preserved
during the IMC composition process and restricts the expressivity significantly.
Both examples above violate this assumption. In this paper, we lift the assump-
tion.

Each of the two extensions shifts the solution methods from complete in-
formation stochastic games to (one-sided) partial observation stochastic games,
where we need to solve the quantitative reachability problem. While this is unde-
cidable in general, we reduce our problem to a game played on an acyclic graph
and show how to solve our problem in exponential time. (Note that even the
qualitative reachability in the acyclic case is PSPACE-hard [?].)

Related work. The synthesis problem is often stated as a game where
the first player controls a component and the second player simulates an en-
vironment [?]. Model checking of open systems, i.e. operating in an unknown
environment, has been proposed in [?]. There is a body of work on assume-
guarantee reasoning for parallel composition of real-time systems [?,?]. Lately,
games with stochastic continuous-time have gained attention, for a very general
class see [?]. While the second player models possible schedulers of the environ-
ment, the structure of the environment is fixed there and the verification is thus
not compositional. The same holds for [?,?], where time is under the control of
the components.

A compositional framework requires means for specification of systems. A
specification can be also viewed as an abstraction of a set of systems. Three val-
ued abstractions stemming from [?] have also been applied to the timed setting,

3

namely in [?] to continuous-time Markov chains (IMC with no non-determinism),
or in [?] to IMC. Nevertheless, these abstractions do not allow for constraints on
time distributions. Instead they would employ abstractions on transition prob-
abilities. Further, a compositional framework with timed specifications is pre-
sented in [?]. This framework explicitly allows for time constraints. However,
since the systems under consideration have non-deterministic flow of time (not
stochastic), the natural choice was to only allow for discrete (not continuous)
time constraints.

Although IMC support compositional design very well, analysis techniques
for IMC proposed so far (e.g. [?,?,?,?] are not compositional. They are all bound
to the assumption that the analysed IMC is a closed system, i.e. it does not
depend on interaction with the environment (all actions are internal). Some
preliminary steps to develop a framework for synthesis of controllers based on
models of hardware and control requirements have been taken in [?]. The first
attempt at compositionality is our very recent work [?] discussed above.

Algorithms for the time-bounded reachability problem for closed IMC have
been given in [?,?,?] and compositional abstraction techniques to compute it are
developed in [?]. In the closed interpretation, IMC have some similarities with
continuous-time Markov decision processes. For this formalism, algorithms for
time-bounded reachability are developed in [?,?].

2 Interactive Markov Chains

In this section, we introduce the formalism of interactive Markov chains together
with the standard way to compose them. We denote by N, R>0, and R≥0 the
sets of positive integers, positive real numbers and non-negative real numbers,
respectively. Further, let D(S) denote the set of probability distributions over
the set S.

Definition 1 (IMC). An interactive Markov chain (IMC) is a quintuple C =
(S,Actτ , ↪→, , s0) where S is a finite set of states, Actτ is a finite set of actions
containing a designated internal action τ , s0 ∈ S is an initial state,

– ↪→ ⊆ S × Actτ × S is an interactive transition relation, and
– ⊆ S × R>0 × S is a Markovian transition relation.

Elements of Act := Actτ r {τ} are called external actions. We write s
a
↪→ t

whenever (s, a, t) ∈ ↪→, and s
λ t whenever (s, λ, t) ∈ where λ is called a rate

of the transition. We say that an external action a, or internal τ , or Markovian
transition is available in s, if s

a
↪→ t, s

τ
↪→ t or s

λ t for some t (and λ), respectively.
IMC are well suited for compositional modelling, where systems are built

out of smaller ones using standard composition operators. Parallel composition
‖A over a synchronization alphabet A produces a product of two IMC with
transitions given by the rules

(PC1) (s1, s2)
a
↪→ (s′1, s

′
2) for each s1

a
↪→ s′1 and s2

a
↪→ s′2 and a ∈ A,

(PC2, PC3) (s1, s2)
a
↪→ (s′1, s2) for each s1

a
↪→ s′1 and a 6∈ A, and symmetrically,

(PC4, PC5) (s1, s2)
λ (s′1, s2) for each s1

λ s′1, and symmetrically.

4

Further, hiding �A an alphabet A, yields a system, where each s
a
↪→ s′ with

a /∈ A is left as it is, and each s
a
↪→ s′ with a ∈ A is replaced by internal s

τ
↪→ s′.

Hiding �Act thus yields a closed IMC, where external actions do not appear
as transition labels (i.e. ↪→ ⊆ S × {τ} × S). A closed IMC (under a scheduler
σ, see below) moves from state to state and thus produces a run which is an
infinite sequence of the form s0 t1 s1 t2 s2 · · · where sn is the n-th visited state
and tn is the time of arrival to sn. After n steps, the scheduler resolves the non-
determinism among internal τ transitions based on the path p = s0 t1 · · · tn sn.

Definition 2 (Scheduler). A scheduler of an IMC C = (S,Actτ , ↪→, , s0)
is a measurable function σ : (S × R≥0)∗ × S → D(S) such that for each path
p = s0 t1 s1 · · · tn sn with sn having τ available, σ(p)(s) > 0 implies sn

τ
↪→ s. The

set of all schedulers for C is denoted by S(C).

The decision of the scheduler σ(p) determines tn+1 and sn+1 as follows. If sn
has available τ , then the run proceeds immediately, i.e. at time tn+1 := tn, to a
state sn+1 randomly chosen according to the distribution σ(p). Otherwise, only
Markovian transitions are available in sn. In such a case, after waiting for a
random time t chosen according to the exponential distribution with the rate
R(sn) =

∑
sn

λ
 s′

λ, the run moves at time tn+1 := tn + t to a randomly chosen

next state sn+1 with probability λ/r where sn
λ sn+1. This defines a probability

space (Runs,F ,PσC) over the runs in the standard way [?].

3 Time-Bounded Reachability

In this section, we introduce the studied problems. One of the fundamental
problems in verification and performance analysis of continuous-time stochastic
systems is time-bounded reachability. Given a closed IMC C, a set of goal states
G ⊆ S and a time bound T ∈ R≥0, the value of time-bounded reachability is
defined as supσ∈S(C) PσC

[
♦≤TG

]
where PσC

[
♦≤TG

]
denotes the probability that

a run of C under the scheduler σ visits a state of G before time T . We have
seen an example in the introduction. A standard assumption over all analysis
techniques published for IMC [?,?,?,?] is that each cycle contains a Markovian
transition. It implies that the probability of taking infinitely many transitions
in finite time, i.e. of Zeno behaviour, is zero. One can ε-approximate the value
and compute the respective scheduler in time O(λ2T 2/ε) [?] recently improved
to O(

√
λ3T 3/ε) [?].

For an open IMC to be put in parallel with an unknown environment, the
optimal scheduler is computed so that it optimizes the guarantee against all
possible environments. Formally, for an IMC C = (C,Actτ , ↪→, , c0) and an
environment IMC E with the same action alphabet Actτ , we introduce a compo-
sition C|E = (C ‖Act E)�Act where all open actions are hidden, yielding a closed
system. In order to compute guarantees on C|E provided we use a scheduler σ
in C, we consider schedulers π of C|E that respect σ on the internal actions of C,
written π ∈ Sσ(C|E); the formal definition is below. The value of compositional
time-bounded reachability is then defined in [?] as

5

sup
σ∈S(C)

inf
E∈ENV

π∈Sσ(C|E)

PπC|E
[
♦≤TG

]
where ENV denotes the set of all IMC with the action alphabet Actτ and ♦≤TG
is the set of runs that reach G in the first component before T . Now π respects
σ on internal actions of C if for every path p = (c0, e0) t1 · · · tn(cn, en) of C|E
there is p ∈ [0, 1] such that for each internal transition cn

τ
↪→ c of C, we have

π(p)(c, en) = p ·σ(pC)(c). Here pC is the projection of p where σ can only see the
path of moves in C and not in which states E is. Formally, we define observation
of a path p = (c0, e0) t1 · · · tn(cn, en) as pC = c0t1 · · · tncn where each maximal
consecutive sequence ti ci · · · tj cj with ck = ci for all i ≤ k ≤ j is rewritten to
ti ci. This way, σ ignores precisely the internal steps of E .

3.1 Specifications of environments

In the second example in the introduction, without any assumptions on the envi-
ronment only zero guarantees could be derived. The component was thus indis-
tinguishable from an entirely useless one. In order to get a better guarantee, we
introduce a formalism to specify assumptions on the behaviour of environments.

Example 1. In the mentioned example, if we knew that after an occurrence of req
the environment is ready to synchronize on resp in time distributed according to
Exp(3) or faster, we would be able to derive a guarantee of 0.26. We will depict
this assumption as shown below.

resp reqreq

req

resp

>

≤ Exp(3)
The dashed arrows denote may transitions,

which may or may not be available, whereas
the full arrows denote must transitions, which
the environment is ready to synchronize on. Full
arrows are further used for time transitions.

Although such a system resembles a timed automaton, there are several fun-
damental differences. Firstly, the time constraints are given by probability dis-
tributions instead of constants. Secondly, there is only one clock that, moreover,
gets reset whenever the state is changed. Thirdly, we allow modalities of may
and must transitions. Further, as usual with timed or stochastic specifications,
we require determinism.

Definition 3 (MCA syntax). A continuous time constraint is either > or of
the form ./ d with ./ ∈ {≤,≥} and d a continuous distribution.We denote the set
of all continuous time constraints by CT C. A modal continuous-time automaton
(MCA) over Σ is a tuple S = (Q, q0, 99K,−→,), where

– Q is a non-empty finite set of locations and q0 ∈ Q is an initial location,

– −→, 99K : Q×Σ → Q are must and may transition functions, respectively,
satisfying −→ ⊆ 99K,

– : Q→ CT C ×Q is a time flow function.

6

We have seen an example of an MCA in the previous example. Note that upon
taking req from the first state, the waiting time is chosen and the waiting starts.
On the other hand, when req self-loop is taken in the middle state, the waiting
process is not restarted, but continues on the background independently.(1) We
introduce this independence as a useful feature to model properties as “response
follows within some time after request” in the setting with concurrently running
processes. Further, we have transitions under > corresponding to “> 0”, mean-
ing there is no restriction on the time distribution except that the transition
takes non-zero time. We formalize this in the following definition. With other
respects, the semantics of may and must transitions follows the standards of
modal transition systems [?].

Definition 4 (MCA semantics). An IMC E = (E,Actτ , ↪→, , e0) conforms
to an MCA specification S = (Q, q0, 99K,−→,), written E |= S, if there is
a satisfaction relation R ⊆ E × Q containing (e0, q0) and satisfying for each
(e, q) ∈ R that whenever

1. q
a−→ q′ then there is some e

a
↪→ e′ and if, moreover, q 6= q′ then e′Rq′,

2. e
a
↪→ e′ then there is (unique) q

a
99K q′ and if, moreover, q 6= q′ then e′Rq′,

3. e
τ
↪→ e′ then e′Rq,

4. q
ctc
 q′ then for every IMC C and every scheduler π ∈ S(C|e),(2) there is a

random variable Stop : Runs→ R>0 on the probability space (Runs,F ,PπC|e)
such that
– if ctc is of the form ./ d then the cumulative distribution function of

Stop is point-wise ./ cumulative distribution function of d (there are no
constraints when ctc = >), and

– for every run ρ of C|e under π, either a transition corresponding to syn-

chronization on action a with q
a
99K q′ 6= q is taken before time Stop(ρ),

or
• the state (c, e′) visited at time Stop(ρ) satisfies e′Rq′, and
• for all states (c̄, ē) visited prior to that, whenever

(a) q
a−→ q′ then there is e

a
↪→ e′,

(b) e
a
↪→ e′ then there is q

a
99K q′.

The semantics of S is the set JSK = {E ∈ IMC | E |= S} of all conforming IMC.

b
≤ Er(3, 1)

a

1 1

a
a

b

Example 2. We illustrate this definition. Consider the
MCA on the right above specifying that a is ready and
b will be ready either immediately after taking a or
within the time distributed according to the Erlang
distribution Er(3, 1), which is a convolution of three
Exp(1) distributions. The IMC below conforms to this
specification (here, Stop ∼ Er(2, 1) can be chosen).

(1) This makes no difference for memoryless exponential distributions, but for all other
distributions it does.

(2) Here e stands for the IMC E with the initial state e.

7

However, observe that it would not conform, if there was no transition under
a from the middle to the right state. Satisfying the modalities throughout the
waiting is namely required by the last bullet of the previous definition.

3.2 Assume-Guarantee Optimization

We can now formally state what guarantees on time-bounded reachability we
can derive provided the unknown environment conforms to a specification S.
Given an open IMC C, a set of goal states G ⊆ C and a time bound T ∈ R≥0,
the value of compositional time-bounded reachability conditioned by an MCA S
is defined as

vS(C) := sup
σ∈S(C)

inf
E∈ENV:E|=S
π∈Sσ(C|E)

PπC|E
[
♦≤TG

]
In this paper, we pose a technical assumption on the set of schedulers of C.

For some clock resolution δ > 0, we consider only such schedulers σ that take
the same decision for any pair of paths c0t1 . . . tncn and c0t

′
1 . . . t

′
ncn with ti and

t′i equal when rounded down to a multiple of δ for all 1 ≤ i ≤ n. This is no
practical restriction as it is not possible to achieve arbitrary resolution of clocks
when implementing the scheduler. Observe this is a safe assumption as it is not
imposed on the unknown environment.

We consider specifications S where distributions have differentiable density
functions. In the rest of the paper we show how to approximate vS(C) for such S.
Firstly, we make a product of the given IMC and MCA. Secondly, we transform
the product to a game. This game is further discretized into a partially observable
stochastic game played on a dag where the quantitative reachability is solved.
For full proofs, see [?].

4 Product of IMC and Specification

In this section, we first translate MCA S into a sequence of IMC (Si)i∈N. Second,
we combine the given IMC C with the sequence (Si)i∈N into a sequence of product
IMC (C × Si)i∈N that will be further analysed. The goal is to reduce the case
where the unknown environment is bound by the specification to a setting where
we solve the problem for the product IMC while quantifying over all possible
environments (satisfying only a simple technical assumption discussed at the end
of the section), denoted ENV′. The reason why we need a sequence of products
instead of one product is that we need to approximate arbitrary distributions
with more and more precise and detailed hyper-Erlang distributions expressible
in IMC. Formally, we want to define the sequence of the products C ×Si so that

vproduct(C × Si) := sup
σ∈S(C)

inf
E∈ENV′

π∈Sσ((C×Si)|E)

Pπ(C×Si)|E
[
♦≤TG

]
approximates the compositional value:

Theorem 1. For every IMC C and MCA S, vS(C) = lim
i→∞

vproduct(C × Si).

8

Note that in vproduct , σ is a scheduler over C, not the whole product C × Si.(3)

Constructing a product with the specification intuitively corresponds to adding
a known, but uncontrollable and unobservable part of the environment to C. We
proceed as follows: We translate the MCA S into a sequence of IMC Si and then
the product will be defined as basically a parallel composition of C and Si.

There are two steps in the translation of S to Si. Firstly, we deal with the
modal transitions. A may transition under a is translated to a standard external
transition under a that has to synchronize with a in both C and E simultane-
ously, so that the environment may or may not let the synchronization occur.
Further, each must transition under a is replaced by an external transition, that
synchronizes with a in C, but is hidden before making product with the environ-
ment. This way, we guarantee that C can take a and make progress no matter if
the general environment E would like to synchronize on a or not.

Formally, the must transitions are transformed into special “barred” tran-
sitions that will be immediately hidden in the product C × Si as opposed to
transitions arising from may transitions. Let Act = {ā | a ∈ Act} denote a fresh
copy of the original alphabet. We replace all modal transitions as follows

– whenever q
a
99K r set q

a
↪→ r,

– whenever q
a−→ r set q

ā
↪→ r.

The second step is to deal with the timed transitions, especially with the
constraints of the form ./ d. Such a transition is, roughly speaking, replaced by
a phase-type approximation of d. This is a continuous-time Markov chain (an
IMC with only timed transitions) with a sink state such that the time to reach
the sink state is distributed with d′. For any continuous distribution d, we can
find such d′ arbitrarily close to d.

Example 3. Consider the following MCA on the left. It specifies that whenever
ask is taken, it cannot be taken again for at least the time distributed by Er(2, λ)
and during all that time, it is ready to synchronize on answer. This specifies
systems that are allowed to ask, but not too often, and whenever they ask, they
must be ready to receive (possibly more) answers for at least the specified time.

r q

answer

ask

≥ Er(2, λ)

1 2 0
λ λ

r q=1 2 0

answer answer answer

ask λ λ

Now

After performing the first step of replacing the modal transitions as described
above, we proceed with the second step as follows. We replace the timed tran-
sition with a phase-type, e.g. the one represented by the IMC in the middle.
Observe that while the Markovian transitions are taken, answer must still be
available. Hence, we duplicate the corresponding self-loops on all the new states.
Further, since the time constraint is of the form ≥, getting to the state (q, 0)

(3) Here we overload the notation Sσ((C×Si)|E) introduced for pairs in a straightforward
way to triples, where σ ignores both the second and the third components.

9

does not guarantee that we already get to the state r. It can possibly take longer.
To this end, we connect the states (q, 0) and r by a special external action Now.
Since this action is synchronized with E ∈ ENV′, the environment can block the
progress for arbitrarily long time. Altogether, we obtain the IMC on the right.

In the case of “≤” condition, we would instead add the Now transition from
each auxiliary state to the sink, which could instead shorten the waiting time.

When constructing Si, we replace each distribution d with its hyper-Erlang
phase-type approximation di with i branches of lengths 1 to i and rates

√
i in

each branch. For formal description, see [?]. Formally, let Now /∈ Act ∪ Act be
a fresh action. We replace all timed transitions as follows:

– whenever q
>
 r such that q 6= r set q

Now
↪→ r,

– whenever q
./d
 r where the phase-type di corresponds to a continuous-time

Markov chain (IMC with only timed transitions) with the set of states D,
the initial state 1 and the sink state 0 , then
1. identify the states q and 1 ,
2. for every u ∈ D and q

α
↪→ q, set u

α
↪→u,

3. for every u ∈ D and q
α
↪→ p with p 6= q, set u

α
↪→ p,

4. if ./ = ≤, then identify r and 0 , and set u
Now
↪→ r for each u ∈ D,

5. if ./ = ≥, then set 0
Now
↪→ r.

Intuitively, the new timed transitions model the delays, while in the “≤” case,
the action Now can be taken to speed up the process of waiting, and in the
“≥” case, Now can be used to block further progress even after the delay has
elapsed.

The product is now the parallel composition of C and Si, where each action ā
synchronizes with a and the result is immediately hidden. Formally, the product
C × S is defined as C ‖PC6

Act∪Act
Si , where ‖PC6

Act∪Act
is the parallel composition

with one additional axiom:

(PC6) s1
a
↪→ s′1 and s2

ā
↪→ s′2 implies (s1, s2)

τ
↪→ (s′1, s

′
2),

saying that a synchronizes also with ā and, in that case, is immediately hidden
(and any unused ā transitions are thrown away).

The idea of Now is that it can be taken in arbitrarily short, but non-zero
time. To this end, we define ENV′ in the definition of vproduct(C × Si) to denote
all environments where Now is only available in states that can be entered by
only a Markovian transition. Due to this requirement, each Now can only be
taken after waiting for some time.

5 Controller-Environment Games

So far, we have reduced our problem to computing limi→∞ vproduct(C × Si).
Note that we are still quantifying over unknown environments. Further, the
behaviour of each environment is limited by the uncontrollable stochastic flow of
time caused by its Markovian transitions. This setting is still too difficult to be
solved directly. Therefore, in this section, we reduce this setting to one, where

10

the stochastic flow of time of the environment (limited in an unknown way) is
replaced by a free non-deterministic choice of the second player.

We want to turn the product IMC C × Si into a two-player controller–
environment game (CE game) Gi, where player con controls the decisions over
internal transitions in C; and player env simulates the environment including
speeding-up/slowing-down S using Now transitions. In essence, con chooses in
each state with internal transitions one of them, and env chooses in each state
with external (and hence synchronizing) transitions either which of them should
be taken, or a delay d ∈ R>0 during which no synchronization occurs. The inter-
nal and external transitions take zero time to be executed if chosen. Otherwise,
the game waits until either the delay d elapses or a Markovian transition occurs.

This is the approach taken in [?] where no specification is considered. How-
ever, there is a catch. This construction is only correct under the assumption
of [?] that there are no states of C with both external and internal transitions
available.

i ?

yes

no

win

fail

λ

a

τ

τ

τ

a

Example 4. Consider the IMC C on the right (for
instance with a trivial specification not restrict-
ing the environment). Note that there are both
internal and external actions available in no.

As τ transitions take zero time, the environment E must spend almost all
the time in states without τ . Hence, when ? is entered, E is almost surely in
such a state e. Now τ form ? is taken and E cannot move to another state when
yes/no is entered. Since action a either is or is not available in e, the environment
cannot choose to synchronize in no and not to synchronize in yes. As a result,
the environment “commits” in advance to synchronize over a either in both
yes and no or in none of them. Therefore, in the game we define, env cannot
completely freely choose which external transition is/is not taken. Further, note
that the scheduler of C cannot observe whether a is currently available in E ,
which intrinsically induces imperfect information.

In order to transfer these “commitments” to the game, we again make use
of the compositionality of IMC and put the product C × Si in parallel with an
IMC Commit and then define the game on the result.

com. now?

{a}

∅

a

τ

τ

Change

Chang
e

τ

Now

The action alphabet of Commit is Act ∪
{Now,Change} and the state space is 2Act ∪
{commit ,now?} (in the figure, Act = {a}; for
formal description, see [?]). State A ⊆ Act cor-
responds to E being committed to the set of cur-
rently available actions A. Thus A

a
↪→ commit

for each a ∈ A. This commitment must be respected until the state of E is
changed: either (1) by an external transition from the commitment set (which
in Commit leads to the state commit where a new commitment is immediately
chosen); or (2) by a Change transition (indicating the environment changed its
state due to its Markovian transition).

The game Gi is played on the arena
(
C×Si ‖Act∪{Now} Commit

)
�
(
Act ∪ {Now}

)
with its set of states denoted by Gi. Observe that external actions have either

11

been hidden (whenever they were available in the commitment), or discarded
(whenever not present in the current commitment). The only external action
that remains is Change. The game Gi is played as follows. There are two types
of states: immediate states with some τ transitions available and timed states
with no τ available. The game starts in v0 = (c0, q0, commit).

– In an immediate state vn = (c, q, e), con chooses a probability distribution
over transitions corresponding to the internal transitions in C (if there are
any). Then, env either approves this choice (chooses X) and vn+1 is chosen
randomly according to this distribution, or rejects this choice and chooses a
τ transition to some vn+1 such that the transition does not correspond to
any internal transitions of C. Then the game moves at time tn+1 = tn to
vn+1.

– In a timed state vn = (c, q, e), env chooses a delay d > 0. Then Markovian
transitions (if available) are resolved by randomly sampling a time t accord-
ing to the exponential distribution with rate R(vn) and randomly choosing
a target state vn+1 where each vn

λ v is chosen with probability λ/R(vn).
• If t < d, Gi moves at time tn+1 = tn + t to vn+1, (Markovian transition wins)

• else Gi moves at time tn+1 = tn + d to (c, q,now?). (E takes Change)

This generates a run v0t1v1t1 · · · . The set (Gi × R≥0)∗ × Gi of prefixes of
runs is denoted Histories(G). We formalize the choice of con as a strategy
σ : Histories(Gi) → D(Gi). We further allow the env to randomize and thus
his strategy is π : Histories(Gi)→ D({X} ∪Gi) ∪ D(R>0). We denote by Σ and
Π the sets of all strategies of the players con and env, respectively.

Since con is not supposed to observe the state of the specification and the
state of Commit , we consider in Σ only those strategies that satisfy σ(p) =
σ(p′), whenever observations of p and p′ are the same. Like before, the observa-
tion of (c0, q0, e0)t1 · · · tn(cn, qn, en) ∈ Histories(G) is a sequence obtained from
c0t1 · · · tncn by replacing each maximal consecutive sequence ti ci · · · tj cj with
all ck the same, by ti ci. This replacement takes place so that the player cannot
observe transitions that do not affect C. Notice that now S(C) is in one-to-one
correspondence with Σ. Further, in order to keep CE games out of Zeno be-
haviour, we consider in Π only those strategies for which the induced Zeno runs
have zero measure, i.e. the sum of the chosen delays diverges almost surely no
matter what con is doing. The value of Gi is now defined as

vGi := sup
σ∈Σ

inf
π∈Π
Pσ,πGi

[
♦≤TG

]
where Pσ,πGi

[
♦≤TG

]
is the probability of all runs of Gi induced by σ and π and

reaching a state with the first component in G before time T . We now show that
it coincides with the value of the ith product:

Theorem 2. For every IMC C, MCA S, i ∈ N, we have vGi = vproduct(C × Si).

This result allows for approximating vS(C) through computing vGi ’s. How-
ever, from the algorithmic point of view, we would prefer approximating vS(C)

12

by solving a single game G whose value vG we could approximate directly. This is
indeed possible. But first, we need to clarify, why the approximation sequence Si
was crucial even in the case where all distributions of S are already exponential.

q r
≥ Exp(1)

a b
Consider the MCA on the right and a conforming en-

vironment E , in which a is available iff b becomes available
within 0.3 time units. If Player env wants to simulate this
behaviour, he needs to know how long the transition to r is
going to take so that he can plan his behaviour freely, only sticking to satisfying
the specification. If we translate Exp(1) directly to a single Markovian transi-
tion (with no error incurred), env knows nothing about this time as exponential
distributions are memoryless. On the other hand, with finer hyper-Erlang, he
knows how long the current branch of hyper-Erlang is roughly going to take. In
the limit, he knows the precise waiting time right after coming to q.

To summarize, env is too weak in Gi, because it lacks the information about
the precise time progress of the specification. The environment needs to know
how much time is left before changing the location of S. Therefore, the game
G is constructed from G1 by multiplying the state space with R≥0 where we
store the exact time to be waited. After the product changes the state so that
the specification component switches to a state with ./ d constraint, this last
component is overwritten with a number generated according to d. This way, the
environment knows precisely how much time is left in the current specification
location. This corresponds to the infinitely precise hyper-Erlang, where we at the
beginning randomly enter a particular branch, which is left in time with Dirac
distribution. For more details, see [?].

Denoting the value of G by vG := sup
σ∈Σ

inf
π∈Π
Pσ,πG

[
♦≤TG

]
, we obtain:

Theorem 3. For every IMC C and MCA S, we have vG = lim
i→∞

vGi .

6 Approximation using discrete-time PO games

In this section, we briefly discuss the approximation of vG by a discrete time
turn-based partial-observation stochastic game ∆. The construction is rather
standard; hence, we do not treat the technical difficulties in great detail (see [?]).
We divide the time bound T into N intervals of length κ = T/N such that the
clock resolution δ (see Section 3.2) satisfies δ = nκ for some n ∈ N.

1. We enhance the state space with a counter i ∈ {0, . . . , N} that tracks that
i · κ time has already elapsed. Similarly, the R≥0-component of the state
space is discretized to κ-multiples. In timed states, time is assumed to pass
exactly by κ. In immediate states, actions are assumed to take zero time.

2. We let at most one Markovian transition occur in one step in a timed state.
3. We unfold the game into a tree until on each branch a timed state with
i = N is reached. Thereafter, ∆ stops. We obtain a graph of size bounded
by b≤N ·|G| where b is the maximal branching and G is the state space of G.

Let Σ∆ and Π∆ denote the set of randomized history-dependent strategies of
con and env, respectively, where player con observes in the history only the

13

first components of the states, i.e. the states of C, and the elapsed time bi/nc
up to the precision δ. Then v∆ := supσ∈Σ∆ infπ∈Π∆ P

σ,π
∆ (♦G) denotes the value

of the game ∆ where Pσ,π∆ (♦G) is the probability of the runs of ∆ induced by
σ and π and reaching a state with first component in G. Let b be a constant
bounding (a) the sum of outgoing rates for any state of C, and (b) densities and
their first derivative for any distribution in S.

Theorem 4. For every IMC C and MCA S, vG is approximated by v∆:

|vG − v∆| ≤ 10κ(bT)2 ln 1
κ .

A strategy σ∗ optimal in ∆ defines a strategy (10κ(bT)2 ln 1
κ)-optimal in G. Fur-

ther, v∆ and σ∗ can be computed in time polynomial in |∆|, hence in time 2O(|G|).

The proof of the error bound extends the technique of the previous bounds
of [?] and [?]. Its technical difficulty stems from partial observation and from
semi-Markov behaviour caused by the arbitrary distributions in the specification.
The game is unfolded into a tree in order to use the result of [?]. Without the
unfolding, the best known (naive) solution would be a reduction to the theory
of reals, yielding an EXPSPACE algorithm.

7 Summary
We have introduced an assume-guarantee framework for IMC. We have consid-
ered the problem to approximate the guarantee on time-bounded reachability
properties in an unknown environment E that satisfies a given assumption. The
assumptions are expressed in a new formalism, which introduces continuous time
constraints. The algorithmic solution results from Theorems 1 to 4:

Corollary 1. For every IMC C and MCA S and ε > 0, a value v and a scheduler
σ can be computed in exponential time such that |vS(C) − v| ≤ ε and σ is ε-
optimal in vS(C).

In future work, we want to focus on identifying structural subclasses of IMC
allowing for polynomial analysis.

Acknowledgement We thank Tomáš Brázdil and Vojtěch Řehák for fruitful
discussions and for their feedback.

References
[AH96] R. Alur and T.A. Henzinger. Reactive modules. In LICS, pages 207–218,

1996.
[BF09] P. Bouyer and V. Forejt. Reachability in stochastic timed games. In Proc.

of ICALP, volume 5556 of LNCS, pages 103–114. Springer, 2009.
[BHK+12] T. Brázdil, H. Hermanns, J. Krčál, J. Křet́ınský, and V. Řehák. Verification

of open interactive markov chains. In FSTTCS, pages 474–485, 2012.
[BHKH05] C. Baier, H. Hermanns, J.-P. Katoen, and B.R. Haverkort. Efficient com-

putation of time-bounded reachability probabilities in uniform continuous-
time Markov decision processes. Theor. Comp. Sci., 345(1):2–26, 2005.

[BS11] P. Buchholz and I. Schulz. Numerical Analysis of Continuous Time Markov
Decision processes over Finite Horizons. Computers and Operations Re-
search, 38:651–659, 2011.

14

[CD10] K. Chatterjee and L. Doyen. The complexity of partial-observation parity
games. In LPAR (Yogyakarta), pages 1–14, 2010.

[DLL+12] A. David, K.G. Larsen, A. Legay, M.H. Møller, U. Nyman, A.P. Ravn,
A. Skou, and A. Wasowski. Compositional verification of real-time systems
using ECDAR. STTT, 14(6):703–720, 2012.

[EKN+12] M.-A. Esteve, J.-P. Katoen, V.Y. Nguyen, B. Postma, and Y. Yushtein. For-
mal correctness, safety, dependability and performance analysis of a satel-
lite. In Proc. of ICSE. ACM and IEEE press, 2012.

[GHKN12] D. Guck, T. Han, J.-P. Katoen, and M.R. Neuhäußer. Quantitative timed
analysis of interactive Markov chains. In NFM, volume 7226 of LNCS, pages
8–23. Springer, 2012.

[HH13] H. Hatefi and H. Hermanns. Improving time bounded computations in
interactive Markov chain. In FSEN, 2013. to appear.

[HK09] H. Hermanns and J.-P. Katoen. The how and why of interactive Markov
chains. In FMCO, volume 6286 of LNCS, pages 311–337. Springer, 2009.

[HKK13] H. Hermanns, J. Krčál, and J. Křet́ınský. Compositional verification and
optimization of interactive markov chains. CoRR, abs/1305.7332, 2013.

[HKR+10] B.R. Haverkort, M. Kuntz, A. Remke, S. Roolvink, and M.I.A. Stoelinga.
Evaluating repair strategies for a water-treatment facility using Arcade. In
Proc. of DSN, pages 419–424, 2010.

[HMP01] T.A. Henzinger, M. Minea, and V.S. Prabhu. Assume-guarantee reasoning
for hierarchical hybrid systems. In HSCC, pages 275–290, 2001.

[HNP+11] E.M. Hahn, G. Norman, D. Parker, B. Wachter, and L. Zhang. Game-
based abstraction and controller synthesis for probabilistic hybrid systems.
In QEST, pages 69–78, 2011.

[KKLW07] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf. Three-valued abstraction
for continuous-time Markov chains. In CAV, pages 311–324, 2007.

[KKN09] J.-P. Katoen, D. Klink, and M.R. Neuhäußer. Compositional abstraction
for stochastic systems. In FORMATS, pages 195–211, 2009.

[KMvS94] D. Koller, N. Megiddo, and B. von Stengel. Fast algorithms for finding
randomized strategies in game trees. In STOC, pages 750–759, 1994.

[KV96] O. Kupferman and M. Vardi. Module checking. In CAV, volume 1102 of
LNCS, pages 75–86. Springer, 1996.

[KZH+11] J.-P. Katoen, I.S. Zapreev, E.M. Hahn, H. Hermanns, and D.N. Jansen.
The ins and outs of the probabilistic model checker MRMC. Performance
Evaluation, 68(2):90–104, 2011.

[LT88] K. G. Larsen and B. Thomsen. A modal process logic. In LICS, pages
203–210, 1988.

[Mar11] J. Markovski. Towards supervisory control of interactive Markov chains:
Controllability. In ACSD, pages 108–117, 2011.

[MC81] J. Misra and K. Mani Chandy. Proofs of networks of processes. IEEE
Trans. Software Eng., 7(4):417–426, 1981.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1), 1989.

[Spr11] J. Sproston. Discrete-time verification and control for probabilistic rectan-
gular hybrid automata. In QEST, pages 79–88, 2011.

[TAKB96] S. Tasiran, R. Alur, R.P. Kurshan, and R.K. Brayton. Verifying abstractions
of timed systems. In CONCUR, pages 546–562, 1996.

[ZN10] L. Zhang and M.R. Neuhäußer. Model checking interactive Markov chains.
In Proc. of TACAS, volume 6015 of LNCS, pages 53–68. Springer, 2010.

15

