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Abstract

Discrete-event systems (DES) are widely used as a modelling formalism in prob-
abilistic verification and performance evaluation. The behaviour of these models
is driven by discrete events that occur randomly in continuous time. We study
the impact of hard real-time bounds within DES such as time-outs changing the
state of the model or deadlines in the specification of the desired behaviour of the
model. Previously, there was no rigorous foundational material on such hard real-
time bounds despite their presence in numerous practically oriented papers.

We show that DES with hard real-time bounds can exhibit an unstable be-
haviour and in general do not have a long-run average distribution. This is rather
surprising as it contradicts several previous results. We also provide sufficient con-
ditions upon which DES with hard real-time bounds are guaranteed to be stable.
Furthermore, we study what changes if the hard real-time bounds are not part of
the DES but a part of the specification of its desired behaviour. We show that such
systems do not suffer from the instability observed in the previous case. Lastly, we
define a 2-player game extension of DES with hard real-time bounds in the spec-
ification. We make use of the previous insight in the structure of such DES and
provide a quantitative solution of the game extension.
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Chapter 1

Introduction

For decades we have built more complicated systems than we are able to under-
stand properly. We try to construct them in the most efficient way and without any
errors in behaviour. Mathematical modelling, especially using software tools, helps
us to cope with the increasing complexity of the systems we create. The general
outline of the process called formal analysis is as follows. In the first step, the real
system is abstracted using an appropriate modelling formalism. In the second step,
we express formally the specification the system should satisfy or the performance
aspects we want to analyse. In the third step, the actual analysis is performed auto-
matically by a computer. The crucial assumption for successful utilization of formal
analysis tools is their correctness. The playground for a theoretical computer sci-
entist in this field is therefore finding powerful enough formalisms for step one and
step two in the process above – with the nice attribute that there are correct and
efficient algorithms to perform step three.

The key part of formal modelling is finding of an appropriate abstraction. One
powerful approach to abstraction is randomness, as it allows us to simplify the
model by declaring complex and intertwined phenomena as independent random
events. Another approach is non-determinism allowing us to claim that we do not
know some parts of the system. Such a non-determinism is later resolved during
the analysis. Out of the possible options, either the most favourable behaviour is
chosen if the unknown part is in our control, or the least favourable behaviour is
chosen if the unknown part is out of our control and we want to find the formal
guarantees the system provides.

Some systems, such as execution of a computer program, can be specified us-
ing discrete-time models that evolve in discrete steps. Other systems, such as wa-
ter flow in a pipe, are continuous in nature and inappropriate for such simplifi-
cation. We focus on discrete-event systems (DES) that change their state only in
discrete points in time when events occur. However, the events occur randomly
in continuous-time and their precise timing is important. A well-known example
of such systems are the continuous-time Markov chains (CTMC). The character-
istic property of a CTMC, called also the memoryless or the Markov property, is
that at any point in time its future behaviour depends only on its current state.
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1. INTRODUCTION

init sent got idle

init’ sent’

query reply sync

lost

retry

query

reply

retry

restart

lost lost

Figure 1.1: A GSMP model of a clock synchronization protocol. Fixed-delay events
are printed in boldface. The delays of lost, restart, and retry are 100, 80, and 5,
respectively. The remaining events are distributed continuously. (For example, the
events query and reply may have Erlang distribution with shape 2 and rate 1, and
the event sync may be distributed exponentially with rate 2.)

This greatly simplifies the analysis but also limits the modelling power. Namely
it implies that the waiting times between the individual events are distributed ac-
cording to an exponential distribution. On the one hand, the exponential distribu-
tion has various occurrences in nature as well as in man-made systems. Namely,
it models the inter-arrival time of an event that can be triggered by a large amount
of independent agents (e.g. a customer coming to a gas-station, a request reach-
ing a web server, or a free electron causing isomerisation of a molecule). On the
other hand, this distribution does not model faithfully many other natural phenom-
ena. This leads to non-Markovian discrete-event systems that have arbitrarily dis-
tributed waiting times such as semi-Markov processes or generalized semi-Markov
processes (GSMP) [Mat62].

A GSMP is basically a transition system over a finite set S of states where each
transition is labelled by an event from a finite set E of events. A transition labelled
with an event e leading from a state s denotes that e is scheduled to occur in s. All
events scheduled to occur in s are awaited in parallel, each such event e occurs after
a delay chosen randomly according to a fixed probability distribution Fe. When
first of the events occurs, the corresponding transition leading to some state s′ is
taken. In state s′, another event e′ that was scheduled previously in s may stop
being scheduled. When e′ later becomes scheduled again due to another change of
state, it is awaited anew regardless the amount of time it was scheduled previously.
All the delay distributions Fe are often assumed to be continuous.

A GSMP may be further extended by inclusion of both the controllable and the
non-controllable non-determinism into a two player turn-based generalized semi-
Markov game (GSMG). In such a game, there are then two players and each player

2



1. INTRODUCTION

init sent got idle
query reply sync

lost

retry

restart

sync lost

init,sent,got

X ≥ 10

idle

X := 0

init,sent,got
X < 10

idle
X := 0

init,sent,got

Figure 1.2: A GSMP model of a clock synchronization protocol observed by a
deterministic timed automaton with one clock X measuring the time since the last
synchronization.

controls her set of decision states. The player� tries to guarantee with her decisions
that the specification is satisfied, the player ♦ tries the opposite.

In the thesis, we study the impact of adding hard real-time bounds in non-
Markovian discrete-event systems such as GSMP or GSMG. The bounds may be

1. a part of the model in the form of events that occur exactly after a fixed delay
(the distribution Fe is then allowed to be concentrated on one point); or

2. a part of the specification such as time bounds in a logic formula or guards
in a timed automaton that observes the behaviour of the process.

Let us illustrate these two approaches with an example of a simplified protocol for
time synchronization. Via message exchange, the protocol sets and keeps a client
clock sufficiently close to a server clock. Each message exchange is initialized by
the client querying the server for the current time. The server replies back its current
timestamp. This message exchange provides a reliable data for synchronization if
it is realized within a specified round-trip delay. Otherwise, the client has to retry

the procedure. After a success, the client is considered to be synchronized until
a given delay elapses and the synchronization is lost due to potential clock skew.
Since the aim is to keep the clocks synchronized all the time, the client restarts

the synchronization process sooner, i.e. after a given delay that runs out before the
synchronization is lost. Notice that the client gets desynchronized whenever several
unsuccessful synchronizations occur in a row.

As regards the first approach, Figure 1.1 shows a GSMP model of this protocol
where the fixed delays are modelled using fixed-delay events whereas the com-
munication is modelled by continuously distributed events. As regards the second
approach, observe that the time-out lost does not influence the synchronization.

3



1. INTRODUCTION

Hence, we can make it a part of the specification as depicted in Figure 1.2. On the
right, there is a deterministic timed automaton (DTA) that observes the process. It
means that it evolves synchronously with the process and when the process takes a
transition into a new state s′, the DTA reads the input letter s′. Let us briefly recall
that a DTA is basically a finite automaton enriched with real-valued clocks. As the
time flows, the value of clocks increases. When an input letter is read, exactly one
edge has its constraints (such as X < 10) over the current values of clocks satisfied.
An edge may further prescribe some of the clocks to be reset (such as X := 0) when
it is taken. Observe that Figure 1.2 actually combines both the approaches. In some
situations it may be convenient to have the hard real-time bounds only a part of the
DTA specification yielding a simpler model.

On the state space of the GSMP (or of the DTA if present) we study:

• probabilistic verification properties: the reachability (and the Büchi ) prop-
erty, i.e. the probability that a given target state is reached (infinitely often);

• performance evaluation measures: the discrete frequency ds of visits to a
given target state s and the timed frequency cs, i.e. the ratio of time spent
in the given target state s. Formally, these random variables are defined by
limits of partial ratios

ds = lim
n→∞

# visits to s in first n steps
n

cs = lim
t→∞

time spent in s up to t
t

We say that ds and cs are well-defined if the limits exist with probability one.
If they are well-defined, we are ideally interested in the probability distribu-
tions of their values.

In the examples above, we may study for example the probability that sync is
visited infinitely often in the DTA observer, the frequency clost in the DTA ob-
server expressing the ratio of time the clocks are not synchronized, or the frequency
cinit′+ csent′ expresses the same in the GSMP in Figure 1.1.

After introducing the models and properties of interest, let us state that our pri-
mary concern is the stochastic stability [MT09] of these models with hard real-time
bounds. Stability is a loosely defined concept related to the recurring patterns in the
infinite behaviour of the process. Specifically, we ask questions such as:

• Under what conditions is a state visited infinitely often in a process with
strongly connected transition graph?

• Under what conditions the long-run average behaviour stabilises so that the
frequency measures ds and cs are well-defined?

4



1. INTRODUCTION

Observe that rather than studying detailed quantitative questions, stochastic sta-
bility tackles the qualitative questions helping to understand the structure of the
systems. For further clarification of this notion, see e.g. the discussion in [MT09,
Section 1.3].

1.1 Contribution of the thesis

The main goal of the thesis is a fundamental research on stability of DES with hard
real-time bounds.

Generalized semi-Markov processes We show that contrarily to previous re-
sults, GSMP with fixed-delay events may exhibit unstable behaviour. In particular,

• we show that the region graph previously applied to the qualitative analysis
of GSMP [ACD91; ACD92] does not fully capture the qualitative behaviour
of the system. Surprisingly, it does not hold that with probability one a bot-
tom strongly connected component of the region graph is reached and all its
nodes are visited infinitely often.

• Furthermore, we show that the discrete and timed frequencies do not have
to be well-defined. As a result, the steady-state distribution may not exist
for these systems. The previous literature presented various approximation
algorithms for this quantity [Lin93; GL94; LS96; LRT99; BPS+98; HTT00;
ZFG+00; ZFH01; Hor02; SDP03; HMM05; CGV09] without questioning its
existence.

We also provide conditions on stability of the systems.

• As regards the first type of hard real-time bounds we consider, we define the
class of single-ticking GSMP with fixed-delay events where the region graph
characterizes the qualitative behaviour and where the discrete and timed fre-
quencies are guaranteed to be well-defined. The conditions are easy to check
algorithmically.

• As regards the second type of hard real-time bounds, we show that any DTA
observer does not add any instability in the system. The proof is by reduction
to a single-ticking GSMP that simulates the DTA observer on-the-fly.

• Furthermore, we address the closely related formalism of deterministic and
stochastic Petri nets (DSPN). We define the class of almost-monotone DSPN
that we show to be stable again by reduction to single-ticking GSMP.

5



1. INTRODUCTION

• Lastly, we show that the discrete and timed frequencies in a single-ticking
GSMP can be effectively approximated.

Generalized semi-Markov games The first contribution is the definition of the
formalism. Then, according to our goal, we focus on fundamental qualitative ques-
tions. We deal with both the reachability and the Büchi specification in the DTA
observer. We show that

• player � does not need to have an optimal strategy (recall that player � tries
to satisfy the specification).

• However if player � has a strategy that guarantees winning with probability
one, then � also has a structurally simple such strategy that can be finitely
represented using a DTA. This finite strategy suffices due to the stability of
the observed system.

• Furthermore, we provide an algorithm that decides existence of such a strat-
egy and constructs it if it exists.

1.2 Author’s contribution

In this section, we summarize the author’s contribution to the research in theoretical
computer science.

Journals

[BFK+13] T. Brázdil, V. Forejt, J. Krčál, J. Křetínský, and A. Kučera. “Con-
tinuous-time stochastic games with time-bounded reachability”. In:
Information and Computation 224 (2013), pp. 46–70.

My contribution: Participated on the proceedings version of the paper
(see below). Provided proofreading and detailed feedback. 15 %

International conference proceedings

[BFK+09] T. Brázdil, V. Forejt, J. Krčál, J. Křetínský, and A. Kučera. “Con-
tinuous-Time Stochastic Games with Time-Bounded Reachability”.
In: Proceedings of the 29th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS). LIPIcs.
Schloss Dagstuhl, 2009, pp. 61–72.

6



1. INTRODUCTION

My contribution: Participated in discussions, formulated the algorithm
and some of the appendix proofs. 20 %

[BKK+10b] T. Brázdil, J. Krčál, J. Křetínský, A. Kučera, and V. Řehák. “Stochas-
tic real-time games with qualitative timed automata objectives”. In:
Proceedings of 21st International Conference on Concurrency The-
ory (CONCUR) (2010), pp. 207–221.

My contribution: Participated in discussions, provided some crucial
insights, written various technical proofs and some parts of the main
body. 30 %

[BKK+11a] T. Brázdil, J. Krčál, J. Křetínský, A. Kučera, and V. Řehák. “Mea-
suring Performance of Continuous-Time Stochastic Processes using
Timed Automata”. In: Proceedings of 14th International Conference
on Hybrid Systems: Computation and Control (HSCC’11). ACM
Press, 2011, pp. 33–42.

My contribution: Participated in discussions, devised and written ma-
jor part of the technical proofs and some parts of the main body of the
paper. 35 %

[BKK+11b] T. Brázdil, J. Krčál, J. Křetínský, and V. Řehák. “Fixed-delay events
in generalized semi-Markov processes revisited”. In: Proceedings of
22nd International Conference on Concurrency Theory (CONCUR).
Springer, 2011, pp. 140–155.

My contribution: Participated in discussions. Devised and written ma-
jor part of the technical proofs of the crucial Theorems 4 and 5. Written
various parts of the main body of the paper. 35 %

[BHK+12] T. Brázdil, H. Hermanns, J. Krčál, J. Křetínský, and V. Řehák. “Ver-
ification of Open Interactive Markov Chains”. In: Proceedings of
32th International Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). LIPIcs. Schloss
Dagstuhl, 2012, pp. 474–485.
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My contribution: Participated in discussions, heavily influenced the
problem formulation. Together with Jan Křetínský devised and written
all the proofs. Participated on writing of the main body. 30 %

[BKK+13] T. Brázdil, L’. Korenčiak, J. Krčál, J. Křetínský, and V. Řehák. “On
time-average limits in deterministic and stochastic Petri nets”. In:
Proceedings of the ACM/SPEC International conference on perfor-
mance engineering (ICPE). Poster paper. ACM. 2013, pp. 421–422.

My contribution: Participated in discussions, written the abstract of
the paper. 35 %

[HKK13] H. Hermanns, J. Krčál, and J. Křetínský. “Compositional Verifi-
cation and Optimization of Interactive Markov Chains”. In: Pro-
ceedings of 24th International Conference on Concurrency Theory
(CONCUR). 2013, pp. 364–379.

My contribution: Heavily participated in discussions, devised and
written major part of the proofs. Participated on various parts of the
main body of the paper. 45 %

The thesis is based on the conference papers [BKK+10b; BKK+11a; BKK+11b;
BKK+13]. However, most of the material was completely rewritten. In particular,

• compared to [BKK+10b], all the definitions have been rewritten resulting in
a cleaner presentation. The proofs have been rewritten (and various mistakes
have been corrected). Furthermore, the Büchi specification has been added.

• Results from [BKK+11a] have been proven by a novel reduction to the prob-
lem considered in the follow-up paper [BKK+11b].

• Compared to [BKK+11b], most of the proofs have been revised (and various
mistakes have been corrected).

• The material from [BKK+13] has been enhanced with formal proofs that
were omitted in the proceedings due to space constraints.

8



1. INTRODUCTION

1.3 Outline of the thesis

Let us outline the structure of the thesis.
Chapter 2 provides the preliminaries and definitions used throughout the thesis.

We first define the modelling formalism, mainly the GSMP and GSMP with fixed-
delay events. Then we formalize the specification formalisms that we use later.

Chapter 3 provides an overview of related research in the area. We review re-
lated modelling formalisms, mainly those impacted by our results. Then we com-
ment on related specification formalisms. In the third section, we provide an over-
view of results on stability of non-Markovian DES. In the final section, we survey
the solution methods for GSMP and related formalisms and comment on the impact
of our results on the methods.

Chapter 4 explains the instability results of GSMP with fixed-delay events. First,
we prove the insufficiency of the region graph for the qualitative verification of
the Büchi specifications. Then we show that the frequency measures are not well-
defined in general.

Chapter 5 then provides conditions for stability. First, we address the stabil-
ity of GSMP with fixed-delay events. Second, we analyse the stability of GSMP
observed by a DTA. Third, we study the stability of the related formalism of deter-
ministic and stochastic Petri nets. Finally, the chapter is concluded by showing that
the frequency measures can be effectively approximated in stable GSMP.

Chapter 6 deals with the non-deterministic extension of GSMP, namely the gen-
eralized semi-Markov games. First, the formalism is defined. In the following sec-
tion, the qualitative reachability in a DTA observer is addressed. We give an algo-
rithm for constructing a simple optimal strategy (if any optimal strategy exists). In
the last section, the reachability results are applied to solving the Büchi specifica-
tion.

Chapter 7 concludes the thesis and discusses ideas for future work.

9





Chapter 2

Discrete-event systems (DES)

In this chapter, we formally introduce the area of the discrete-event systems. We
avoid the unnecessary technical details; when appropriate, we refer the reader to
more rigorous sources. Instead, we illustrate the notions by numerous examples.
Let us briefly define the basic notation.

In this text, the sets of all positive integers, non-negative integers, real numbers,
positive real numbers, and non-negative real numbers are denoted by N, N0, R,
R>0, and R≥0, respectively. For a non-negative real number r ∈ R≥0, brc denotes
its integral part, i.e. the largest integer smaller than r, and 〈r〉 denotes its fractional
part, i.e. r−brc. Let A be a finite or countably infinite set. A probability distribution
on A is a function f : A→R≥0 such that ∑a∈A f (a) = 1. The set of all distributions
on A is denoted by D(A).

A σ -field over a set Ω is a set F ⊆ 2Ω that includes Ω and is closed under
complement and countable union. A measurable space is a pair (Ω,F ) where Ω

is a set called sample space and F is a σ -field over Ω whose elements are called
measurable sets. Given a measurable space (Ω,F ), we say that a function f : Ω→
R is a random variable if the inverse image of any real interval is a measurable set. A
probability measure over a measurable space (Ω,F ) is a function P : F → R≥0

such that P(Ω) = 1 and we have P(
⋃

i∈I Xi) = ∑i∈I P(Xi) for each countable
collection {Xi}i∈I of pairwise disjoint elements of F . A probability space is a triple
(Ω,F ,P), where (Ω,F ) is a measurable space and P is a probability measure
over (Ω,F ). We say that a property A ⊆ Ω holds for almost all elements of a
measurable set Y if P(Y )> 0, A∩Y ∈F , and P(A∩Y | Y ) = 1.

A function f : R→R≥0 is called a density if
∫

∞

0 f (x)dx = 1. For a density f and
a value t ∈ R≥0 we define a “shifted” density function f|t as

f|t(x) =
f (x+ t)∫
∞

t f (y) dy
.

Notice the denominator scales the function up so that it is a density again. A density
f is called Markovian if f (x) = f|t(x) for any t,x ∈ R≥0.

11



2. DISCRETE-EVENT SYSTEMS (DES)

2.1 Modelling formalisms

The field of discrete-event systems is broad [CL08], we focus on generalized semi-
Markov processes (with deterministic events). As this formalism is an extension
of the widely used continuous-time Markov chains, we start with CTMCs. All the
models we define share the same concepts: discrete state space, event-driven be-
haviour, and random arrival time of events.

Example 2.1.1. Consider an example of a public photo booth. It has two states
– free and occupied. With the flow of time it remains in its current state until an
event comes – a person enters the booth or a person leaves the booth. Notice the
current state determines which events can come – if the booth is free, no one can
leave it. Furthermore, we can easily measure or estimate the times we wait for the
individual events. It can happen that a person leaves the booth 2 seconds or 2 hours
after entering it but it is rare. Such observation may lead us to model this waiting
time using, e.g., the log-normal distribution.

The formalism of CTMCs offers the most limited choice of probability distribu-
tions on events’ arrival: only the exponential distributions are allowed.

2.1.1 Continuous-time Markov chains (CTMC)

A continuous-time Markov chain (CTMC) is a tuple C = (S,R,α0), where S is a
finite set of states, R : S× S→ R≥0 is a rate matrix, and α0 ∈ D(S) is an initial
distribution.

The set S is the discrete state space. The system starts in a state randomly chosen
according to the discrete distribution α0. Then it moves from state to state when-
ever an (exponentially distributed) event occurs. An exponential distribution is fully
specified by a single parameter, its rate. As its name suggests, it corresponds to the
rate of occurrence of the event per time unit. For example, if on average 3 people
try to enter the photo booth per hour, we use the rate 3. For any two states s and
s′, the rate matrix R(s,s′) specifies the rate of such an event that is awaited in state
s and upon whose arrival the system moves to state s′. If no such event can take
place, it is expressed by a rate 0. CTMCs are often graphically represented as di-
rected graphs (allowing self-loops) where each edge corresponds to an event. For
the photo booth example, see Figure 2.1.

A run of a CTMC is an infinite sequence of the form σ = s0 t0 s1 t1 s2 · · · where
si ∈ S and ti ∈ R>0 for each i ∈ N0. This means that the system starts in state s0,
stays there for t0 time units until an event occurs and the system moves to state
s1. It waits in state s1 for time t1 and moves to s2 and so forth. Since there are
uncountably many runs, each individual run has probability 0. But we can assign

12



2. DISCRETE-EVENT SYSTEMS (DES)

free occupied

new

E(3)

done

E(12)

new

E(3)

Figure 2.1: A photo booth modelled as a CTMC. The notation E(λ ) denotes the
exponential distribution with rate λ . Notice that if there was no delay between the
customers’ visits so that the booth was occupied all the time, 12 people would leave
it on average per hour. The initial distribution assigns probability 0.5 to the state
free and 0.5 to the state occupied and is not depicted.

positive probabilities to (measurable) sets of runs. An example of such a set of runs
is the first 5 people enter the booth in the first hour. Formally these probabilities
are specified using a probability space (Ω,F ,P) over the set of all runs Ω. For
the case of CTMCs, see e.g. [BH03]. We will get into more details when defining
GSMP with fixed-delay events.

2.1.2 Generalized semi-Markov processes (GSMP)

For some systems, the exponential distribution is an appropriate abstraction. Yet,
it is a strong limitation for many other systems; various natural phenomena can be
more faithfully modelled using non-Markovian distributions. The generalized semi-
Markov processes are able to model parallel systems with arbitrarily distributed
arrival times.1

Definition 2.1.2 (GSMP). A generalized semi-Markov process (GSMP) is a tuple
M = (S,E ,E, P,α0) where

• S is a finite set of states,
• E is a finite set of independent continuously distributed events where we

associate to each event e its density function fe,
• E : S→ 2E assigns to each state the set of events scheduled to occur in this

state,
• P : S×E →D(S) is a successor function, and
• α0 ∈D(S) is an initial distribution.

We illustrate with an example how the events are scheduled to occur in parallel.

1. The earlier formalism of semi-Markov processes, the sequential extension of CTMCs, allow only
for one non-Markovian action to be performed at a time.
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free occupiedservicing

new

E(3)

done

N(0.1,0.012)

new

E(3)

service

U(100,200)

performed

N(0.4,0.052)
0.6

0.4

Figure 2.2: Photo booth with servicing, an example of a GSMP. The service event
can occur in both free and occupied states and its distribution depends on the
elapsed time.

Example 2.1.3. In Figure 2.2 we combine the customers of the photo booth with
a (simplified) servicing procedure. Imagine that the process starts in the state free.
There are two parallel events, the event new, exponentially distributed with rate
3, and the event service, distributed uniformly on [100,200]. As the time flows,
many new customers come and the process alternates between the states free and
occupied. But the fact that new customers arrive does not postpone the servicing.
After the first 50 hours, it is distributed uniformly between 50 and 150 hours. The
process is not Markovian any more: knowing the current state does not give you
the complete information. We must also remember what time ago each event was
scheduled - the elapsed time of the event.

To process starts in a state s0 randomly chosen according to α0. At this moment,
the elapsed time of each event e ∈ E(s0) is zero. The scheduled events occur ran-
domly in continuous-time causing the process to change state. When is state s an
event e occurs, the process moves into a random state according to the fixed prob-
ability distribution given by P(s,e). For example, when a service is performed the
process moves with probability 0.6 to the state free and with probability 0.4 to the
state occupied. As long as the process moves between the states where an event e
is scheduled to occur, its elapsed time accumulates. When this event is triggered or
the process enters a state where e is not scheduled, its elapsed time is reset. When
the process returns into a state where the event e is scheduled to occur, its elapsed
time starts accumulating from 0 again. The elapsed time t of an event e influences
the probability that is happens in the future; it occurs with density fe|t (provided it
does not stop being scheduled by an occurrence of another event before it occurs
itself).

More formally, a configuration is a triple (s,ξ , t) where s ∈ S, ξ is a vector of

14



2. DISCRETE-EVENT SYSTEMS (DES)

elapsed time which assigns to every event e ∈ E(s) the amount of time that elapsed
since the event e was scheduled,2 and t is the time spent in the previous configura-
tion. We define ξ (e) =⊥ whenever e 6∈E(s). The process starts in an initial config-
uration (s0,ξ0,0) where s0 is chosen randomly according to the initial distribution
α0 and ξ0 assigns zero to all events enabled in s0. Then the process moves from
configuration to configuration forming a run (s0,ξ0, t0)(s1,ξ1, t1)(s2,ξ2, t2s) · · · . In
configuration (si,ξi, ti), some time ti+1 > 0 is spent and then some event e occurs
with density

fe|ξ (e)(ti+1) · ∏
c∈E(si)\{e}

∫
∞

ti+1

fc|ξ (c)(y) dy.

Observe that the first term corresponds to event e occurring at time ti+1 and the sec-
ond term corresponds to all other scheduled events occurring after a delay longer
than ti+1. Then the process moves to (si+1,ξi+1, ti+1) where si+1 is chosen randomly
according to P(si,e) and ξi+1 is obtained from ξi as follows. The elapsed time of
old events of E(si)rE(si+1) is discarded to ⊥, the elapsed time of each inher-
ited event of (E(si+1)∩E(si))r {e} is increased by ti+1, and the elapsed time of
each new event of (E(si+1)rE(si))∪ (E(si+1)∩{e}) is set to 0. The described be-
haviour again induces a probability measure P over the measurable space (Ω,F ).
This process was introduced by Matthes [Mat62], for a more recent formal defini-
tion including the probability space see e.g. [Whi80b]. Notice that we define the
probability space rigorously in the following subsection for a more general model.

2.1.3 GSMP with fixed-delay events

Not every distribution has a density function. In particular, discrete distributions
cannot be expressed this way. In the area of electronic systems, discrete distribu-
tions play a special role since they allow expressing deterministic events such as
time-outs. The definition needs to be changed as multiple (fixed-delay) events can
occur at the same moment of time.

Definition 2.1.4 (GSMP with fixed-delay events). A generalized semi-Markov pro-
cess with fixed-delay events is a tuple (S,E ,E,Succ,α0) where

• S is a finite set of states,
• E is a finite set of events where to every e ∈ E we associate the lower
bound `e ∈ N0 and the upper bound ue ∈ N∪{∞} of its delay. We say that
e is a fixed-delay event if `e = ue, and a variable-delay event if `e < ue. To

2. Alternatively, the configuration is defined to store the time left before the event appears. Our
definition (similar to [Gly89; YS04]), is equivalent and (a) more convenient for our proof techniques
in the general setting where both bounded and unbounded events appear and (b) necessary for the
game extension of GSMP.
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2. DISCRETE-EVENT SYSTEMS (DES)

each variable-delay event e we assign a density function fe : R→ R such
that

∫ ue
`e

fe(x)dx = 1.

• E : S→ 2E assigns to each state s a set of events E(s) 6= /0 scheduled to
occur in s,
• Succ : S× 2E → D(S) is the successor function, i.e. assigns a probability
distribution specifying the successor state to each state and set of events that
occur simultaneously in this state, and
• α0 ∈D(S) is the initial distribution.

Furthermore, let e be any variable-delay event. We say that e is bounded if
ue 6= ∞, and unbounded, otherwise. We assume fe to be positive and continuous
on the whole [`e,ue] or [`e,∞) if e is bounded or unbounded, respectively, and zero
elsewhere. Finally, we require that there is a real number r ∈ R such that for any
unbounded event e it holds supt≥`e

E[e | t]≤ r where E[e | t] denotes
∫

∞

0 x · fe|t(x)dx.
Intuitively, we require that the expected waiting for an event is finite and does not
increase beyond any bounds when we increase the time we have already waited.
Observe that most of the standard distributions satisfy this assumption.

The intuitive dynamics of the GSMP with fixed-delay events is the same as of
GSMP, except for the fact that several events can occur simultaneously as illustrated
by the following example.

Example 2.1.5. In Figure 2.3, there is a photo-booth that can close itself automat-
ically, when some servicing is necessary. Every 100 hours, cleaning is needed; ev-
ery 300 hours paper and toner also need to be refilled. Notice that for the servicing
events to occur simultaneously in the state in use, they both need to be scheduled
also in out of order.

A formal semantics of GSMP is usually defined in terms of general state-space
Markov chains (GSSMC, see, e.g., [MT09]). A GSSMC is a stochastic process Φ

over a measurable state-space (Γ,F ) whose dynamics is determined by an initial
measure µ on (Γ,F ) and a transition kernel P which specifies one-step transition
probabilities.3 A given GSMP induces a GSSMC whose state-space consists of
all configurations, the initial measure µ is induced by α0 in a natural way, and
the transition kernel is determined by the dynamics of GSMP described above.
Formally,

• Γ is the set of all configurations {(s,ξ , t) | s ∈ S,ξ : E →R≥0, t ∈R≥0}, and
F is a σ -field over Γ induced by the discrete topology over S and the Borel
σ -fields over vectors of elapsed times and over R≥0;

3. Precisely, transition kernel is a function P : Γ×F → [0,1] such that P(z, ·) is a probability
measure over (Γ,F ) for each z ∈ Γ; and P(·,A) is a measurable function for each A ∈F .
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in use out of orderout of order2
cleaning needed

F(100)

cleaning needed +
refill needed

F(100)+F(300)
cleaning neededF(100)

done

U(3,12)

done

U(1,10)

refill needed

F(300)

Figure 2.3: Servicing of a photo booth, an example of a generalized semi-Markov
process with fixed-delay events. The distribution with fixed delay t is denoted by
F(t). For better clarity, we omit transitions for subsets of events that occur with
probability 0 such as only {refill needed} in the states in use and out of order.

• the initial measure µ allows starting only in configurations with zero elapsed
time, i.e. for each measurable set A∈F we have µ(A) = ∑s∈S,(s,0,0)∈A α0(s);

• the transition kernel P(z,A) describing the probability to move in one step
from a configuration z = (s,ξ , t) to any configuration in a measurable set A
is defined as follows. It suffices to consider A of the form {s′}×X× I where
X is a measurable set of vectors of elapsed time and I is a measurable subset
of R≥0. Let V and F be the sets of variable-delay and fixed-delay events,
respectively, that are scheduled in s. Let F ′ ⊆ F be the set of fixed-delay
events that can occur as first among the fixed-delay event enabled in z, i.e.
that have in ξ the minimal remaining time u. Note that two variable-delay
events occur simultaneously with probability zero. Hence, along with F after
time u we consider all combinations of e ∈V after time t < u:

P(z,A) =


∑e∈V

∫
∞

0 Hit({e}, t) ·Wins({e}, t) dt if F = /0

∑e∈V
∫ u

0 Hit({e}, t) ·Wins({e}, t) dt

+ Hit(F ′,u) ·Wins(F ′,u) otherwise,

where the term Hit(E, t) denotes the conditional probability of hitting A un-
der the condition that E occurs at time t and the term Wins(E, t) denotes the
probability (density) of E occurring at time t. Formally,

Hit(E, t) = Succ(s,E)(s′) ·1[ξ ′ ∈ X ∧ t ∈ I]

where 1[ξ ′ ∈ X ] is the indicator function and ξ ′ is the elapsed time after
the transition, i.e. ξ ′(e) is ⊥, or ξ (e) + t, or 0 for each old, or inherited,
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or new event e, respectively. The most complicated part is the definition of
Wins(E, t) which intuitively corresponds to the probability that E is the set
of events “winning” the competition among the events scheduled in s at time
t. Recall that fe|ξ (e) denotes the “shifted” density function that takes into
account that the time ξ (e) has already elapsed. We have

Wins(E, t) =


fe|ξ (e)(t) ·∏c∈V\E

∫
∞

t fc|ξ (c)(y) dy if E = {e} ⊆V,

∏c∈V
∫

∞

t fc|ξ (c)(y) dy if E = F ′ ⊆ F,

0 otherwise.

A run of the Markov chain is an infinite sequence σ = z0 z1 z2 · · · of configurations.
The Markov chain is defined on the probability space (Ω,F ,P) where Ω is the
set of all runs, F is the product σ -field

⊗
∞
i=0 F , and P is the unique probability

measure [MT09] such that for every finite sequence A0, · · · ,An ∈F we have that

P(Φ0∈A0, · · · ,Φn∈An) =
∫

z0∈A0

· · ·
∫

zn−1∈An−1

µ(dz0) ·P(z0,dz1) · · ·P(zn−1,An)

where each Φi is the i-th projection of an element in Ω (the i-th configuration of
a run). Finally, we define an m-step transition kernel Pm inductively as P1(z,A) =
P(z,A) and Pi+1(z,A) =

∫
Γ

P(z,dy) ·Pi(y,A).

Remark 2.1.6. Observe that, for simplicity, we allow only events with either con-
tinuous or Dirac distribution. This is not a huge restriction as every discrete dis-
tribution with finite support (or arbitrary support) can be simulated (or approx-
imated) by a chain of fixed-delay events. Furthermore, any distribution can be
uniquely decomposed to its discrete part and its continuous part and hence sim-
ulated by a continuous event and a sequence of fixed-delay events likewise.

For a given DES we denote by Pz the probability measure of the system when
it starts in the configuration z, i.e. for any measurable set A of configurations the
initial measure is µ(A) = 1 if z ∈ A and µ(A) = 0, otherwise.

2.2 Specification formalisms

In this section, we address the ways to specify the desired behaviour of DES. We are
mainly concerned with the long-run behaviour. Namely with the ω-regular proper-
ties and performance measures in both the GSMP and its DTA observer as outlined
in the following table.

GSMP M DTA A observing M

ω-regular properties BüchiM (T ) ReachA (T ), BüchiA (T )
performance measures dM

s , cM
s dA

q , cA
q
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The notions from the table are defined in the following subsections. For an
overview of related specification formalisms studied in the literature, see Chapter 3.

2.2.1 ω-regular properties in a GSMP

The Büchi properties are a widely studied class of ω-regular properties.

Definition 2.2.1 (Büchi specification). For a given GSMP M , the Büchi specifi-
cation over a subset of target states T ⊆ S is the set of runs BüchiM (T ) that visit
some state in T infinitely often.

Observe that the Büchi specification does not involve any explicit time con-
straints. Nevertheless, the analysis of this specification is far from straightforward,
as shown in Section 4.1.

Example 2.2.2. If we set G= {servicing} for the system from Figure 2.2, we specify
that servicing must occur infinitely many times. It is easy to see that for this system
we have P(BüchiA (G)) = 1.

2.2.2 Performance measures in a GSMP

Though the Büchi specification requires some behaviour to occur infinitely often,
it cannot quantify how often it actually occurs. These performance concerns are
important for many applications [BHH+05] and can be captured by various per-
formance measures. A typical type of performance measures are the time-average
limits of reward functions or more complicated reward structures. Another type of
performance measures quantifies various delays [Haa10] in the discrete-event sys-
tems. The basic approach that we deal with in the thesis is the discrete frequency of
visits to a given state and the timed frequency, i.e. the ratio of time spent in a give
state,

Definition 2.2.3 (Discrete and timed frequencies). For a given GSMP M with set
of states S, the discrete and timed frequency of visits to s ∈ S along a run σ =

(s0,ξ0, t0)(s1,ξ1, t1) · · · of M , denoted by dM
s (σ) and cM

s (σ), are defined by

dM
s (σ) = lim

n→∞

∑
n
i=0 1si=s

n

cM
s (σ) = lim

n→∞

∑
n
i=0 ti+1 ·1si=s

∑
n
i=1 ti+1

where 1si=s equals 1 if si = s and 1si=s equals 0, otherwise. We write ds and cs if
M is clear from context. We say that the measure ds or cs is well-defined for a run
σ if the corresponding limit exists.
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Observe that these performance measures make sense only if they are (almost
surely) well-defined. This, roughly speaking, corresponds to stability of the system
under study.

Example 2.2.4. For the system from Figure 2.3, the measure

dout of order2/(dout of order+dout of order2)

specifies the ratio of servicing where also refill is needed which is equal with prob-
ability 1 to 1/3. Similarly, the measure cout of order+cout of order2 specifies the ratio
of time when the booth is out of order. A straightforward computation reveals that
with probability 1 it is ≈ 0.06.

2.2.3 DTA specifications

Timed automata have been introduced [AD94] as a modelling formalism for worst-
case analysis of real-time systems. Since then a huge community grew up around
this model extending it and using it in many other directions. One such direction is
using deterministic timed automata (DTA) as a specification formalism for stochas-
tic real-time systems, originally proposed by Alur et al. [ACD92] for the qualitative
analysis of GSMP. Almost two decades later, the stochastic logic CSLTA incorpo-
rating one-clock timed automata was defined [DHS07] and timed automata were
also used [CHK+09] for quantitative analysis of CMTC. We use this specification
formalism to study the long-run behaviour of GSMP (and its 2-player game exten-
sion).

A timed automaton is basically a finite automaton endowed with a finite set of
real-valued clocks. The timed automaton reads timed words, i.e. sequences of in-
put letters and time stamps. Notice that a run of a stochastic system can be easily
translated into an infinite time word (a sequence of states and times spent there).

Let X be a finite set of clocks. A valuation is a function ν : X → R≥0. For a
valuation ν and a subset X ⊆X of clocks, we denote by ν [X := 0] the valuation
assigning 0 to x ∈ X and ν(x) to x 6∈ X . Further, for a valuation ν and t ∈ R≥0, we
denote by ν + t the valuation assigning ν(x)+ t to each x ∈X .

A clock constraint (or guard ) is a finite conjunction of basic constraints of the
form x ./ c, where x ∈X , ./ ∈ {<,≤,≥,>}, and c ∈ N0. For a valuation ν and
a clock constraint g, let ν |= g denote that ν satisfies g (the satisfaction relation is
defined in the expected way). Further, by [g] we denote the set of valuations that
satisfy g. Finally, the set of all guards over X is denoted by B(X ).

Definition 2.2.5 (DTA). A deterministic timed automaton (DTA) is a tuple A =

(Q,Σ,X ,−→,qinit), where Q is a finite set of locations, Σ is a finite alphabet, X
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is a finite set of clocks, qinit ∈Q is an initial location, and−→⊆Q×Σ×B(X )×
2X ×Q is an edge relation such that for all q∈Q and a∈ Σ we have the following:

1. the guards are deterministic, i.e., for all pairs of distinct edges of the form
(q,a,g1,X1,q1) and (q,a,g2,X2,q2) we have that [g1]∩ [g2] = /0;

2. the guards are total, i.e., for every q ∈ Q, a ∈ Σ, and valuation ν there is an
edge (q,a,g,X ,q′) such that ν |= g.

A configuration of A is a pair (q,ν), where q ∈ Q and ν is a valuation. An in-
finite timed word is an infinite sequence ω = c0c1c2 · · · where each ci is either a
letter of Σ or a non-negative real number denoting a time stamp. The run of A
on ω is the unique infinite sequence A (ω) = (q0,ν0)c0 (q1,ν1)c1 · · · such that
q0 = qinit , ν0 = 0, and for each i ∈ N0, slightly abusing the notation, we have that
(qi,νi)

ci−→(qi+1,νi+1) which holds under the following conditions:

• if ci is a time stamp t ∈R≥0, then we require that qi+1 = qi and νi+1 = νi+ t,

• if ci is an input letter a ∈ Σ, there is a unique edge (qi,a,g,X ,q) such that
νi |= g, and we require that qi+1 = q and νi+1 = νi[X := 0].4

Lastly, we define the standard region relation ∼. It partitions the configurations
into finitely many equivalence classes called regions. For a,b ∈ R≥0, we say that a
and b agree on integral part if bac= bbc and neither or both a, b are integers. Let B
be the maximal constant in the guards of A . We put (q,ν)∼ (q′,ν ′) if q = q′ and

• for all x ∈X , ν(x) and ν ′(x) agree on integral part or are both > B,

• for all x,y ∈X lower than B in ν , 〈ν(x)〉 ≤ 〈ν(y)〉 iff 〈ν ′(x)〉 ≤ 〈ν ′(y)〉.

Definition 2.2.6 (DTA observer). Let M be a GSMP with a set of states S. We
say that a DTA A is an observer of M if its alphabet is S.5 We define a random
variable W that assigns to each run σ = (s0,ξ0, t0)(s1,ξ1, t1) · · · of M its induced
timed word W (σ) = s0 t1 s1 t2 · · · . Finally, the observation of A over W (σ) is the
computation of A , i.e. A (W (σ)).

Now, let us discuss several forms of specifications based on DTA observers. We
start with basic ones.

4. Sometimes, we use the relation for finite words w = c0 · · ·cn. We write (q0,ν0)
w−→(qn+1,νn+1)

if there are configurations (q1,ν1), . . . ,(qn,νn) such that (qi,νi)
ci−→(qi+1,νi+1) for all 0≤ i≤ n.

5. Another option is to have a labelling function for the states of M and define the timed automaton
over the labels. For the sake of simplicity, we define it directly this way.
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wait start checked

cleaned

bad

free

X := 0

servicing

Y := 0

free

Y ≥ 15m

occupiedX ≤ 1h

occupied

X ≤ 1∧Y ≥
15m

Figure 2.4: Thorough servicing. An example of a reachability specification in a
DTA observer. Notice that edges are labelled with states of the servicing GSMP in
Figure 2.2. The edges without labels represent the remaining behaviour (remaining
input letters and clock valuations not covered by the other edges).

Definition 2.2.7 (Reachability and Büchi properties in the DTA observer). Let us
fix a GSMP M , a DTA observer A , and a set of target locations T ⊆Q. The reach-
ability specification over T is the set of runs ReachA (T ) = {A (W ) visits T}, i.e.
runs for which the observer visits a location in T . Furthermore, the Büchi specifi-
cation over T is the set of runs BüchiA (T ) = {A (W ) visits T infinitely often}.

Notice that reachability in the observer TA can easily express reachability and
time-bounded reachability in the original system as well as various more elaborate
properties. Let us illustrate the concept by an example.

Example 2.2.8. Figure 2.4 shows an example of a reachability DTA specification. It
specifies that a servicing takes at least quarter of an hour and around the servicing
there is at most one hour without a customer. Observe that this property cannot be
specified by a formula in the logic CSL because of the simultaneous testing of two
deadlines.

A DTA observer is also suitable for expressing more complex performance mea-
sures. We basically transfer the discrete and timed frequencies from the run of the
stochastic system to the computation of the timed automaton. The definition is anal-
ogous.

Definition 2.2.9 (Frequencies in the observer). Let M be a GSMP, A its DTA ob-
server, and q a location of A . We define the discrete frequency and timed frequency
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start odd even

more

less

occupied occupied

X := 0

free, service

X > 5 min

free, service

X ≤ 5 min

start

ok

heat

occupied

X > 10 min

occupied

X ≤ 10 min

free, service

X := 0

Figure 2.5: Performance of the serviced photo booth, an example of DTA perfor-
mance measures. The automaton on the left measures out of the even customers,
the ratio of those who spend in the booth more than 5 minutes. It corresponds to the
number dmore/(dmore+dless). The automaton on the right measures the ratio of time
the printer in the booth is overheated (for this measure we assume that the printer
remains overheated if there are two customers in the booth closer than 10 minutes
to each other). It corresponds to the number cheat.

of q in a run σ with A (W (σ)) = (q0,ν0)s0 (q1,ν1) t1 (q′1,ν
′
1)s1 (q2,ν2) · · · by

dA
q (σ) = lim

n→∞

∑
n
i=0 1qi=q

n

cA
q (σ) = lim

n→∞

∑
n
i=0 ti ·1qi=q

∑
n
i=1 ti

where, likewise, 1qi=q equals 1 if qi = q and 1qi=q equals 0, otherwise.

Example 2.2.10. Figure 2.5 demonstrates that these specifications allow measur-
ing performance w.r.t. behaviour that satisfies complicated time or structural con-
straints. For example, out of the even customers, what is the ratio of those that
spend in the booth more than 5 minutes? The time constraints stem from the clocks
and guards of the timed automaton, the structural constraints stem from its transi-
tion structure of a finite automaton. None of these aspects are possible to express
within the classical reward structures or delays. Only some of these aspects are
expressible within other performance frameworks.
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Chapter 3

State of the Art

In this chapter, we review the state of the art related to hard real-time bounds in
discrete-event systems and how the related work has been impacted by our results.

3.1 Related modelling formalism

As many related papers study different formalisms describing similar concepts,
we introduce these formalisms briefly in this section. The main dichotomy in the
literature stems from the stochastic Petri nets, an area extensively studied in the field
of performance evaluation. Stochastic Petri nets have arisen from queuing networks
(apart from standard Petri nets). One of the reasons for the performance evaluation
community to study stochastic Petri nets is its appeal to people in practice; the
models are easy to understand without any knowledge of statistics, automata theory,
or formal methods.

3.1.1 Stochastic Petri Nets

Stochastic Petri nets are based on standard Petri nets. Let us briefly recall the Petri
nets formalism. It consists of a finite set of places and a finite set of transitions.
For each transition t, there are sets of input places, inhibitor places, and output
places. Marking, the current configuration of the net, is a function that assigns to
each place a non-negative number of tokens. A transition is said to be enabled in
a marking m if each its input place has at least one token in the marking m and
each its inhibitor place has no token in the marking m. When a transition is fired,
one token is removed from each its input place and one token is added into each its
output place.

The net starts in the initial marking and then changes its marking by firing en-
abled transitions. If there are multiple transitions enabled at a time, one of them is
chosen non-deterministically. A marking m is reachable if there is a sequence of
markings m0 · · ·mn where m0 is the initial marking, mn = m, and for each i ∈ N0,
mi+1 is obtained from mi by firing one of the transitions enabled in mi. A Petri net
is called bounded if the number of reachable markings is finite.
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Stochastic Petri net is a Petri net where the transitions are fired randomly in
continuous time and is usually restricted to be bounded. We define a general class
of stochastic Petri nets that allows us to easily identify the studied subclasses.

Definition 3.1.1. A Stochastic Petri Net (SPN) is a tuple 1

N = (P,T,T ′, I,H,O,F,p,m0) where

• P is a finite set of places, T is a finite set of transitions, and T ′ ⊆ T are the
immediate transitions (the transitions T \T ′ are called timed);
• I(t), H(t), and O(t) are the sets of input places, inhibitor input places, and
output places for each t ∈ T ;
• F(·, t) is a clock-setting distribution function for each transition t ∈ T \T ′;
• p(·,E) is a distribution on {−1,0,1}|P| for each set E ⊆ T of transitions
that fire concurrently;
• m0 is the initial marking.

A configuration of a SPN in a triple (m,τ,x) where m is a marking, τ assigns
to each transition its current time to fire, and x is the time spent in the previous
marking. A transition t is firable in a configuration if it is enabled and its time to
fire τ(t) is not higher than the time to fire of any other enabled transition. In a
configuration (m,τ,x), the next configuration (m′,τ ′,x′) is obtained by firing the
set of firable transition E as follows.

• A vector v∈ {−1,0,1}|P| is chosen randomly according to p(·,E) and we set
m′ = m+ v.

• Let t ′ be a transition enabled in m′. We say that t ′ is newly enabled if t ′ was
not enabled in m or t ′ ∈ E. If t ′ is immediate, we set τ ′(t ′) to 0. If t ′ is timed
and newly enabled, τ ′(t ′) is randomly sampled according to F(·, t ′). If t ′ is
timed and not newly enabled, we set τ ′(t ′) = τ(t ′)−δ where δ = τ(t) for a
t ∈ E.

• The time x′ equals τ(t) for a t ∈ E.

This stochastic extension resolves all the non-determinism that was originally
present in a Petri net. Hence, N induces a jump marking process (Ξn)n∈N0 where
each Ξi is the configuration of N after i firings.

Example 3.1.2. In Figure 3.1, there is a stochastic Petri net corresponding to the
GSMP model from Figure 2.3. On the left there is the marking at time 0 and on the
right there is the marking that is reached with probability 1 at time 300.
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Figure 3.1: Servicing of a photo booth, an example of a stochastic Petri net. Places
are drawn as circles, fixed-delay transitions as thick bars, and variable-delay transi-
tions as empty bars. Input and output places of a transition are marked with normal
arrows, inhibitor places with a circled arrow. When both the fixed-delay transitions
occur at once, both of them move the tokens concurrently.

Out of the variety of classes of SPN defined in the literature, there are several
classes relevant to the topic of the thesis:

• Generalized stochastic Petri nets (GSPN) [ACB84] restrict F(·, t) to be ex-
ponential for each timed transition t. This class closely corresponds to the
continuous-time Markov chains.

• Deterministic and stochastic Petri nets (DSPN) [MC87], restricts F(·, t) for
each timed transition t to be exponential or deterministic. A distribution func-
tion F(·, t) is called deterministic if there is a b ∈ N such that F(x, t) = 0
for each x < b and F(x, t) = 1 for each x ≥ b. This class roughly corre-
sponds to GSMP with fixed-delay events where each variable-delay event
is exponentially distributed. It is also similar to recently introduced delayed
CTMC [GGH+12] from the area of computational biology.

• Stochastic timed Petri nets (sTPN) [CGV09] restricts F(·, t) for each timed
transition t to be either deterministic, or to have positive density on an interval
[`t ,ut) for `t ∈N0 and ut ∈N∪{∞}. This class is even closer to our definition
of GSMP with fixed-delay events.

Modelling power of SPN and GSMP Now we restate in our notation the result
of [Haa10] that SPN and GSMP have the same modelling power. As our definition

1. There are numerous different definitions; ours is based on [Haa10]
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of GSMP is more restricted compared to [Haa10], we also restrict in the theorem
below to the subclass of sTPN.

Definition 3.1.3 (Simulation of SPN and GSMP). We say that

• a GSMP M with its associated stochastic process Φ simulates a SPN with
the marking process Ξ, if there is a mapping φ from the configurations of
the GSMP to the configurations of the SPN such that Ξn and φ(Φn) have the
same distributions for each n ∈ N0;
• a SPN with the marking process Ξ simulates a GSMP M with its associated
stochastic process Φ if there is a mapping ξ from the configurations of the
SPN to the configurations of the GSMP such that Φn and ξ (Ξn) have the
same distributions for each n ∈ N0.

Theorem 3.1.4. For any sTPN N , there is a GSMP with fixed-delay events that
simulates N . Furthermore, for any GSMP (with fixed-delay events) M , there is a
sTPN that simulates M .

The result follows from [Haa10, Theorems 3.4 and 4.6]. Note that [Haa10] de-
fines the configurations of the underlying general state space Markov chain of a
GSMP to store the remaining time to occurrence of events instead of the elapsed
time. However, both the ways are used interchangeably in the literature and their
equivalence is easy to show. Let us now briefly review other related modelling for-
malisms.

3.1.2 Stochastic extensions of timed automata

An alternative approach to DTA observers is to combine DES and TA within one
model. One such formalism is the extension of probabilistic timed automata (PTA),
the continuous PTA [KNS+00]. In a PTA, the discrete transitions when reading
letters are probabilistic. The continuous randomness is then added by the means
of clock resets: clocks are not reset to 0 but to a random point chosen according
to a continuous distribution with bounded density. First difference to our approach
is that the continuous PTA does not allow unbounded continuous events. Second,
there is still a non-determinism in the flow of time in the continuous PTA similar
to the non-determinism of TA. For this model, verification of a logic PTCTL is
addressed by discretization.

A different approach is taken in [BBB+07; BBB+08a; BBB+08b; BBJ+12]. A
stochastic semantics of TA is defined by assigning to every configuration (q,ν) a
measure µ(q,ν) on the delay of the next step. The non-determinism among edges
is also resolved randomly according to weights assigned to edges. This definition
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yields a broad class of models, various restrictions are assumed for practical so-
lutions. Qualitative model-checking algorithms are given in [BBB+08a] for one-
clock stochastic timed automata and in [BBJ+12] for reactive stochastic timed au-
tomata with arbitrarily many clocks. This class of reactive models roughly corre-
sponds to GSMP observed by DTA where all events of the GSMP have variable
delay supported on the whole R≥0. Note that it is a subclass of GSMG that we deal
with in Chapter 6 and the algorithm of [BBJ+12] is very similar to our algorithm
from [BKK+10a]. However, their proof technique allows a wider class of speci-
fications than considered in Chapter 6. A quantitative model checking algorithm
is given in [BBB+08b] for one-clock reactive stochastic timed automata where all
delays are exponentially distributed. Note that the problem is similar to the analysis
of CTMC observed by one-clock DTA [CHK+09].

This general definition of stochastic timed automata is further extended with
non-deterministic flow of time in the 2-player game model of stochastic timed
games [BF09]. Due to its expressiveness, the quantitative reachability is shown to
be undecidable. The only fragment that is shown to be decidable is the qualitative
reachability in a one-player game with only one event.

Stochastic automata [DKB97] is another formalism introducing stochastic flow
of time into timed automata. It however rather corresponds to GSMP (with fixed
delay events) as it does not allow the non-deterministic flow of time. Compared
to GSMP, this model is better suited for process algebraic extensions (see below)
as it still contains the non-determinism when taking discrete transitions. Most of
the research in this area focuses on process algebraic questions directed at efficient
compositional modelling. The analysis is performed by simulation or by automat-
ically abstracting the models to simpler formalisms where the standard techniques
can be applied [BdH+06]. None of this related work considers stability of systems
combining DES with TA.

3.1.3 Process algebras and game extensions of DES

A lot of attention has been addressed to various game extensions of CTMC. Some
previous literature also deals with (one-player) game extension of GSMP. One-
player non-determinism also arises from the interleaving of synchronization in pro-
cess algebras defined over DES. Process algebras are languages for compositional
modelling of parallel systems. Using a process algebra, models can be built bottom-
up; larger components are obtained by parallel composition of multiple smaller
components that synchronize using message passing.

CTMC The game extension of CTMC are covered in closer detail by the recent
Ph.D. thesis [Kre13]. Various authors considered one player game extension, the
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continuous-time Markov decision processes [BHK+05; NSK09; BS11; BHH+11].
In this formalism, an action, chosen by a scheduler in each state of the system, in-
fluences the rates of events that are awaited. A similar model of interactive Markov
chains [Her02; ZN10; HH13] builds upon CTMC a process algebra in order to
allow compositional modelling. In this formalism, instead of actions there are in-
ternal transitions in some states that are taken in zero time. Another process algebra
stemming from CTMC is PEPA [Hil96].

Two-player turn-based games over CTMC, the continuous-time stochastic games
were defined in [BFK+09; BFK+13] and further studied by [RS11; RS13]. In this
setting, the set of states is partitioned among two players where the action is always
chosen by the player in charge. Recently a limited form of concurrency appeared
in [BHK+12; HKK13] where two-player games are studied as a solution technique
to compositional verification of interactive Markov chains.

The work in this area addresses synthesis of optimal (or ε-optimal) schedulers
and computation of guarantees provided by such schedulers. The specification is
usually the time-bounded reachability or a formula in the logic CSL (see below).

GSMP The generalized semi-Markov decision processes were introduced in the
community of applied statistics by [Dos79] and in the area of probabilistic verifica-
tion by [YS04]. Another approach is discussed in [GY94] where the current rates
of events are subject to continuous control. The scheduler can thus within some
bounds continuously choose the distribution functions of events. A process alge-
braic extension of GSMP, called interactive generalized semi-Markov process, was
introduced by [BG02]. Similarly to the research on stochastic automata [DKB97],
this research focuses more on the process-algebraic questions than on the analysis.
A one-player non-determinism is also present in the continuous PTA [KNS+00]
discussed above.

To the best of our knowledge, the only two-player game model with stochas-
tic non-Markovian flow of time are the stochastic timed games [BF09]. As dis-
cussed above, this model however combines the stochastic flow of time with the
non-deterministic flow of time. Furthermore, the distributions of clocks’ delays are
configuration-dependent and only a very restricted problem is shown to be decid-
able for this model.

3.2 Related specification formalisms

Let us fix a discrete-event system with a state space S. A standard property of the
system to be specified and analysed is the transient distribution π(t) at time t. It is
the discrete distribution of a random variable that to each run of the system assigns
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the state at time t. In the following text, we focus on properties related to long-run
analysis of DES.

Steady-state analysis The stationary distribution π is the limit limt→∞ π(t) of the
transient distributions. This limit always exists for finite CTMC [Kul95] and coin-
cides with the timed frequency c. However, for semi-Markov processes and hence
also for generalized semi-Markov processes, this limit may not exist [LHK01]. In-
stead, the timed frequency is studied [LHK01; Alf97]. The notion steady-state dis-
tribution is loosely used to denote both the stationary distribution for CTMC and
the timed frequency for non-Markovian models.

Logics The most prominent logic for the stochastic continuous-time systems is
the continuous stochastic logic (CSL) introduced by Aziz et al. [ASS+00] and later
extended by Baier and Haverkort [BH03]. It is a branching-time temporal logic that
also allows specifying long-run properties. The syntax is as follows:

ϕ ::= tt | a | ¬ϕ | ϕ ∧ϕ | PEp(XIϕ) | PEp(ϕUIϕ) | SEp(ϕ)

where a is an atomic proposition,E∈ {≤,<,>,≥}, p∈ [0,1] is a real number, and
I ⊆R>0 is a non-empty interval. For the sake of simplicity we assume here that the
set of atomic proposition coincides with the set of states of the model.

Let us first define the semantics for CTMC. For a state s we set s |= tt and s |= as

where as is the atomic proposition of the state s. The negation and conjunction
is defined in the expected way. Further, we set s |= PEp(XIϕ) if the set of runs
A = {s0t0s1t1 · · · | t0 ∈ I,s1 |= ϕ} has probability Ps(A) E p when starting from
s. Similarly, s |= PEp(ϕUIψ) if the set of runs B = {s0t0s1t1 · · · | ∃ i : t0 + · · ·+
ti−1 ∈ I,si |= ψ,∀ j < i : s j |= ϕ} satisfies Ps(B)E p. Finally, we set s |= SEp(ϕ) if
∑s′|=ϕ πs(s′)E p where πs is the stationary distribution when the chain starts in s.

Example 3.2.1. We illustrate the logic on several formulae.

• P≥0.9(ttU[0,100] (aservicing ∧ P≥0.4(aservicingU[0,1] afree))) specifies that with
probability at least 0.9 the next servicing of the photo booth will start in the
following 100 hours and when it starts, with probability at least 0.4 the booth
will be free again within one hour.
• S≥0.1(occupied) specifies that the photo booth is occupied at least 10% of

time in the long-run.
• S≥0.1(aoccupied ∧ P≥0.9(ttU[0,0.1] afree)) specifies that the photo booth is at
least 10% of time in such a state that a person is inside the booth and the
person leaves the booth in up to 6 minutes with probability at least 0.9.

31



3. STATE OF THE ART

The semantics has been similarly defined for semi-Markov processes [LHK01];
instead of the stationary distribution the timed frequency is used for the semantics
of the steady-state operator S. Notice that for GSMP the semantics needs to be
defined on configurations instead of states [YS02] because the satisfaction of a
formula when entering a state depends also on the elapsed times of the events.
Apart from that it goes along the same lines.

The logic CSL is similar to the logic PTCTL [KNS+00]. In the recent years,
several follow-up logics appeared, such as asCSL [BCH+07] and CSLTA [DHS07].
They differ from CSL in the way they specify the path restrictions. The logic asCSL
defines labelling for both states and events and specifies paths by regular expres-
sions over the language of pairs of state and event labels. The logic CSLTA speci-
fies paths by deterministic one-clock timed automata. A similar approach focusing
rather on the structure are the experiments proposed by de Alfaro [Alf98] for the
long-run average behaviour analysis. Experiments are basically trees of the possi-
ble behaviour with reward in leaves. A set of variables is defined. Each variable has
a fixed value in each state of the discrete-event system. Every node in the tree then
contains a constraint over variables. The experiment tree is traversed so that the
constraints are kept satisfied. The experiments can be used to measure the long-run
average reward or the long-run average time of traversal from the root to the leaves.

3.3 Stability of discrete-event systems

Research on stability of GSMP mainly addresses the existence of invariant measure.
A probability measure π on the measurable space (Γ,F ) of configurations of the
GSMP is called invariant if for all A ∈F it holds π(A) =

∫
Γ

π(dx)P(x,A), i.e. the
measure does not change when a step is taken. As we discuss later in Chapter 5,
the existence of invariant measure implies that the frequency measures d and c are
almost-surely well-defined. Hence, this research is closely related to our topic.

Work from early 80’s [Whi80a; Gly83] shows that a GSMP has a unique in-
variant measure if all events have continuous densities and finite moments. This
is further extended by [HG02; Haa10] by proving the existence of the invariant
measure for GSMP where the events have continuous part with positive density
on [0,x] for some x > 0 (again excluding the fixed-delay events). A different ap-
proach [GY94] proves stability in GSMP with arbitrary distributions that satisfy
strict structural monotonicity conditions. The require the GSMP to be (1) non-
interruptive, i.e. no scheduled event may get switched off, and (2) permutable, i.e.
if a sequence of events can occur in two different permuted orders, the set of events
scheduled in the respective target states coincide. Stability is also implied by the
strong notion of insensitivity that has been extensively studied on GSMP, see for
example [BS81; Tay89; CT92]. A DES is called insensitive if its steady-state dis-
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tribution depends on the events’ distributions only via their means. None of these
papers targets GSMP with fixed-delay events. Another related result [HG01] stud-
ies the regenerative structure of GSMP for the sake of efficient simulation but only
minor results are relevant to GSMP with fixed-delay events. Note that regeneration
roughly speaking means visiting a configuration with all elapsed times ξ equal to
zero.

The regenerative behaviour is further stressed in regenerative GSMP [HS87] or
Markov regenerative stochastic Petri nets [CKT94] pointing out regenerative sub-
classes that are stable but not discussing the stability outside their subclass. Further-
more the subclass is quite restrictive: at most one non-Markovian event enabled in
each state. Most of the work in this area (including ours) bases its proofs on the
abstract treatment of stability for Markov chains with general state space [MT09].

3.4 Quantitative solution methods

The main result of this thesis, the study of stability of GSMP with fixed-delay
events addresses qualitative questions. There are various solution methods for quan-
titative analysis of GSMP (or SPN). In this section, we review the various proposed
methods and put them into perspective with our instability result.

3.4.1 Analytical solutions

One approach is to formulate the solution precisely using a mathematical expres-
sion that preferably admits an efficient numerical solution. Due to the rigorous
nature of this approach, these algorithms provide a correct answer. As discussed
below, they either a priori restrict to a stable subclass of models or do not terminate
when applied to an unstable model.

Uniformization of CTMC We start with uniformization [Jen53], the key tech-
nique for analysis of CTMC as further methods for more complicated formalisms
build upon this technique. Observe that the transient probability of state s at time t
can be expressed as

π(t)(s) =
∞

∑
i=1

∑
s1···si∈Si−1s

D(s1 · · ·si) ·Tt(s1 · · ·si) (3.1)

where D(s1 · · ·si) = α0(s1)∏
i−1
j=1 P(s j,s j+1) is the time-abstract probability of tak-

ing path s1 · · ·si with P(s j,s j+1) = Q(s j,s j+1)/−Q(s j,s j) and Tt(s1 · · ·si) is the
probability that at time t this path is traversed and no further step is made. In a
CTMC, the term Tt depends on a sum of exponentially distributed random vari-
ables each having a different rate. The probability that such a sum is lower that t
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Figure 3.2: Uniformization. The original CTMC is on the left. By adding self loops
we change the exit rate of all states to be the same. The resulting CTMC on the right
is equivalent to the original one up to stuttering, i.e. taking self-loop transitions.
Note that stuttering does not alter the transient distributions. The matrix P is then
the transition matrix of the embedded Markov chain of the CTMC on the right. An
embedded Markov chain of a DES is a discrete time process such that its discrete
steps correspond to the state changes in the continuous-time DES.

has a closed form expression [AM97] but the computation of (3.1) [BFK+13] is
inefficient in practice [BHH+11]. By creating a discrete-time Markov chain with
transition matrix P = Q/µ + I where µ = maxs∈S−Q(s,s) is the maximal exit rate
in the system, we get

π(t)(s) =
∞

∑
i=1

(α0Pi)(s) ·Poiss(i,µt)

where Poiss(i,µt) is the probability that a Poisson-distributed random variable with
parameter µt equals to i. This way, the discrete-time and continuous-time behaviour
is totally decomposed. The method is illustrated in Figure 3.2.

This method has many uses in the area of probabilistic verification. By making
a target state s absorbing, the transient probability πt(s) expresses the probability
that s is reached within time t. Similarly, by making all states s with s |= ¬ϕ ∨ψ

absorbing, the probability πt(s) can be used to decide whether the CSL formula
PEp(ϕU [0,t]ψ) is satisfied. Similar approach can be taken for other forms of the in-
terval in the operator U yielding the CSL logic decidable [ASS+00] and efficiently
(approximately) verifiable in practice [BH03; KNP11; KZH+09].

Method of subordinated Markov chains for DSPN Recall that DSPN is a class
of stochastic Petri nets with exponential or deterministic distribution on the firing
times of the transitions. In this class the nets are restricted so that always at most one
deterministic transition is enabled at a time. This restriction was imposed when the
class was introduced [MC87]. The method of subordinated Markov chains applies
uniformization to the steady-state analysis of DSPN. In this method, a discrete-time
Markov chain is build such that its states correspond to a subset M′ of markings of
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the Petri net where either (a) no deterministic transition is enabled or (b) a deter-
ministic transition newly became enabled.

• The transition probabilities from a state s of type (a) are as in the embedded
chain as there is no deterministic transition.

• The transition probabilities from a state s of type (b) are computed as fol-
lows. Let m ∈M′ be the marking corresponding to s. Either the deterministic
transition fires after its delay d (after firing some exponential transitions) and
we end up in some m′ ∈M′; or this transition gets disabled before time d and
we again reach some marking m′ ∈M′. The subordinated Markov chain is a
CTMC obtained from the marking process of the Petri net by ignoring the
deterministic transitions. The CTMC starts in m and all other markings from
M′ are made absorbing. The transition probabilities from s are finally simply
obtained from the transient distribution πd .

Finally, the steady-state distribution is computed from the steady-state distribution
of the DTMC, roughly speaking, by weighting it by the expected times one spends
in the states of the DTMC. This method has been later extended to the transient
analysis [CKT93]. The idea of subordinated Markov chains is closely related to the
method used for quantitative reachability in CTMC observed by one-clock timed
automaton [CHK+09], in verifying the logic CSLTA [DHS07], or for analysing
DTA properties of population models [BL13].

Symbolical integration There is another analytical approach for models where
the events have either fixed delay or have expolynomial distribution, i.e. its density
is piecewise defined by expolynomials of the form ∑

n
i=0 ∑

m
j=0 ai jxie−λi jx with each

ai j ∈ R and each λi j ∈ R≥0.
First, [CGL94] showed for semi-Markov models that transition probabilities of

the embedded DTMC can be computed by symbolical integration instead of com-
puting them numerically [CKT94; LHK01]. This symbolical approach was imple-
mented in the tool TimeNET [ZFG+00].

Later, the symbolical integration of expolynomials was extended [SV07] to gen-
eralized semi-Markov models using the concept of zone graph [Dil90] from the
theory of timed automata. By endowing the zones with densities over events’ de-
lays [BPS+05], the zone graph then actually corresponds to the embedded Markov
chain and allows efficient steady-state analysis. A similar approach to the tran-
sient analysis of πt was proposed by [AB06] but it only restricted to at most k
occurrences of events up to time t. Later, the unrestricted transient analysis was ad-
dressed [HRV10b; HPR+12] by introducing into the zone graph an artificial event
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that occurs at time t. Both steady-state and transient analysis using the zone graph
are implemented in a tool Oris [BCR+10].

Note that conceptually, the symbolical integration extends the algorithm for tran-
sient analysis of uniformized models to the wider class of expolynomial distribu-
tions. Similar such extensions of Jensen’s method were used in various other pa-
pers, such as [GL94; BA07; BFK+13].

Remark 3.4.1. Notice that the method of symbolical integration is the first method
that we mention that allows for multiple concurrent fixed-delay events. If the al-
gorithm terminates, it is guaranteed to return a correct answer. However, for some
(non-regenerative) models, the zone graph may be infinite and hence, the algorithm
does not terminate. Later, approximation of the densities using Berstein expolyno-
mials has been introduced [HRV10a] without any proof of correctness, that can
thus provide an incorrect answer.

3.4.2 Approximation techniques

Similarly to Remark 3.4.1, there are many methods that promise to approximate the
steady-state or transient distributions. However, rigorous proofs of correctness for
these methods are rare. Thus, for models with multiple fixed-delay events, one can
compute a distribution [Lin93; GL94; LS96; LRT99; BPS+98; HTT00; ZFG+00;
ZFH01; Hor02; SDP03; HMM05; CGV09] that should approximate the timed fre-
quency. In fact, the timed frequency may not exist and the notion “approximation”
may make no sense. In the following, we sketch the various methods and comment
how they cope with their correctness.

Method of supplementary variables We start with the simple model of DSPN
extended to support multiple concurrent deterministic transitions where the method
of supplementary variables [Cox55b] was proposed [GL94]. In the initial work, the
state space is extended with real-valued variables of remaining time to fire of the
events.2 Thus the continuous-time is transformed into continuous-space yielding a
discrete-time Markov chain with general state space [MT09]. They then express the
steady-state distribution using a system of PDE that can be solved by discretization.

A follow-up paper [LS96] instead proposes an explicit discretization by time
steps ∆. The steps of the defined general state space Markov chain hence do not
correspond to occurrences of events but to lapse of time ∆. Again, by extending the
method of Jensen, the (infinite) transition kernel of the state space with supplemen-
tary variables can be analytically characterized. However, a numerical solution is

2. Observe that in our formal treatment we build on this method, even though we encode into the
state space the elapsed times of events instead.
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applied (solving the Voltera integral equations of the second type). This method was
later extended to the transient analysis [LT99] and implemented in a tool DSPN-
Express 2.0 [LRT99]. None of the approaches discusses the existence of the timed
frequency and as such may provide incorrect answers.

Approximation by a DSPN with single deterministic transition A completely
different approach to solving DSPN with multiple concurrent deterministic tran-
sitions has been proposed ca. 10 years later [HMM06]. One new deterministic
transition t∆ is added such that its delay ∆ divides the delay of any other deter-
ministic transition. This transition fires repeatedly like ticking of a clock and sim-
ulates the remaining transition. As the deterministic transition can become enabled
at any time but fire only when t∆ fires, their delay is only approximate. Again, the
correctness of this approximation is not proven (and in fact, it may be incorrect
due to Theorems 4.2.1 and 5.1.2). Later, this method was independently reinvented
by [GGH+12] for the analysis of delayed CTMC in the area of computational biol-
ogy.

Phase-type approximation The nice analytical properties of the CTMCs can be
exploited for the GSMPs by approximating them using a CTMC. Each arbitrarily
distributed event is replaced with a similar event with the phase-type (PH) distri-
bution [Cox55a]. F is a PH distribution if there exists a CTMC C with designated
absorbing target state s such that for all x ∈ R≥0 we have F(x) = πx(s). Here, πx is
the transient distribution of C at time x. The overall CTMC that approximates the
GSMP can be built by composing the CTMC gadgets Ce for each non-exponential
event e, see Figure 3.3. Note that any continuous distribution can be approximated
up to arbitrary precision by a PH distribution [Neu81]. However the impact on the
transient or steady-state distributions has not been rigorously studied; not even in
the context of probabilistic verification of GSMDP [YS04]. Furthermore, for mod-
els with fixed-delay events, this approach may be incorrect as the resulting CTMC
always has the steady-state distribution unlike the original GSMP.

Most of the research on PH approximation of non-Markovian models has been
conducted in the area of stochastic Petri nets. The continuous PH approximation
was introduced here by [BC84]. Later a different approach of discrete PH approx-
imation was studied [Mol85]. The concept is the same, a discrete-time Markov
chain is created such that its transient and steady-state distribution approximates
the distributions in the original model. Each step of the DTMC now corresponds
to lapse of time ∆ in the original model for some appropriate ∆ > 0. Observe, that
the potential instability of the model is again not preserved by this approxima-
tion as every finite-space DTMC almost-surely attains the discrete frequencies. A
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Figure 3.3: Phase type approximation. On the left, there is a GSMP model of one
customer being served in a photo-booth. A repair comes after a fixed delay of
10 days, customer comes with an exponential distribution with rate 20, err is expo-
nential with rate 0.1 corresponding to an error occurring each 10 days of the use of
the booth on average, and served is a non-exponential variable-delay distribution.
In the middle, there are 3-state PH approximations of events served and repair. On
the right, there is the CTMC PH approximation obtained roughly speaking as a
product of the GSMP and the two PH gadgets.

hybrid approach combining the discrete and continuous PH has been also consid-
ered [JC01] which creates an approximating model similar to DSPN. This method
preserves the (in)stability of the model, which may however get lost in the further
solution method.

As regards the efficiency of this method, observe that the size of the resulting
model is exponential in the sizes of the gadgets and in the parallelism of the model.
This method therefore performs better for models where the events are easy to
fit (such as various continuous distributions supported on the whole R≥0) and the
parallelism is in some sense local [HMC97]. Furthermore, expressing the product
state space using the Kronecker algebra [Neu81; SB98] permits the models to be
analysed without explicitly building the whole rate or transition matrix.

Discretization Discretization as a solution method is prevalent in the transient
analysis of the game extensions of discrete-event systems, mainly in continuous-
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time Markov decision processes (CTMDP). In this solution method, the process
is transformed into a discrete-time Markov decision process that “models” the
continuous-time process at times that are multiples of the discretization step ∆.
An assumption that at most one event occurs within each interval of size ∆ is
used and an error bound derived [Neu10]. Follow-up methods allow for multi-
ple events to occur within each interval [HH13], for adaptive sizes of the inter-
vals [BS11], or for two-player games where one player controls the flow of time
non-deterministically [BHK+12; HKK13]. Discretization was also used for solving
a continuous-time stochastic extension of timed automata [KNS+00].

As regards models without non-determinism, this approach was proposed for
non-Markovian stochastic Petri nets [ZFH01] and is closely related to discrete PH
approximation. The main difference is that phase-type approximation may produce
smaller model (with additional loss of precision) by adding self-loops or feedbacks
in the DTMC gadgets; discretization rather corresponds to gadgets of the form of
a chain with exit transitions into the target state from each state of the chain. A
related research studies the proxel based simulation [Hor02; Laz05; KH09] which
is in fact discretization where the state space is generated on the fly and states with
insignificant probability are disposed. In contrast to discretizing CTMDPs, none of
the work on non-Markovian models discusses the correctness of the discretization
with respect to the stability of the models.

Simulation Another simple approximation method for transient and steady-state
analysis of DES is simulation, also called Monte Carlo method [MU49]. Basically,
the result is obtained by averaging a huge amount of randomly generated samples
of the behaviour. This method is often used as an engineering tool that usually
works. However, there is a vast literature on how to guarantee that the result lies
within a small enough confidence interval around the actual value with high enough
confidence level, see e.g. [Gly89; Haa10] and [JS89; HTT00] for the tool support.
To the best of our knowledge, there is no research on such rigorous guarantees for
GSMP with fixed-delay events. As a side effect of our theoretical research, we pro-
vide such guarantees for the restricted class of single-ticking GSMP in Section 5.4.
More importantly, we show that in the unrestricted class, simulation may not pro-
vide correct answers to steady-state analysis as the steady-state distribution may
not even exist.

The simulation method currently draws a lot of attention in the area in proba-
bilistic verification as the so called statistical model checking [SVA04]. Supported
by a number of tools [You05; KZH+09; KNP11], this approach attracts research
in verification [YKN+06; LDB10] as well as computational biology [HLG+09;
JCL+09]. The most related to the topic of this thesis is the work of Younes [YS02]
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on statistical model checking of GSMP (without fixed-delay events) against a time-
bounded fragment of the logic CSL. Due to the time-boundedness, formal guar-
antees are obtained in a rather straightforward way using a variant of the Wald’s
sequential probability ratio test. Not much insight into the inner workings of the
system is needed nor provided. Due to its simplicity, the statistical model checking
is claimed [DLL+11] to allow us to solve many instances of undecidable problems.
For DES with hard real-time bounds, this thesis also aims at not loosing correctness
along the way.
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Chapter 4

Unstable Behaviour in GSMP with Fixed-delay Events

In this chapter, we show the unstable behaviour of GSMP caused by fixed-delay
events. First, we address the simpler Büchi specification and show that previous
algorithms [ACD91; ACD92] are not correct. Second, we address the more intricate
frequency measures. We show that GSMP models with fixed-delay events can also
be unstable with respect to the discrete and timed frequencies, i.e. the variables d
and c may not be well-defined. In other words, the steady-state distribution may not
exist. This observation refines various previous results, for example [GL94; LS96;
HMM05; ZFH01; Hor02], where the possibility that the steady-state distribution
may not exist was not considered at all. This chapter is based on [BKK+11b].

4.1 Büchi specifications

We first consider the qualitative model-checking problem whether for a given GSMP
M and a given set of target states T , we have P(BüchiM (T )) = 1. In [ACD91;
ACD92] there are algorithms for this model-checking problem based on the region
graph. They rely on two crucial statements of the papers:

1. Almost all runs end in some of the bottom strongly connected components
(BSCC) of the region graph.

2. Almost all runs entering a BSCC visit all regions of the component infinitely
often.

The qualitative model checking then (according to these statements) reduces to
SCC decomposition. Both of these statements are true for finite-state Markov chains.
In this section, we show that neither of them has to be valid for region graphs of
GSMP.

Region graph Let us first define the region graph of a GSMP. Let C =max({`e,ue |
e ∈ E } \ {∞})+ 1 be greater than the maximal finite bound of the events of M .
Analogously to the region relation of timed automata, we put (s,ξ , t)∼ (s′,ξ ′, t ′) if
s = s′ and
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• for all e ∈ E , ξ (e) and ξ ′(e) agree on integral part or are both >C,

• for all e, f ∈ E lower than C in ξ , 〈ξ (e)〉 ≤ 〈ξ ( f )〉 iff 〈ξ ′(e)〉 ≤ 〈ξ ′( f )〉,

Note that ∼ is an equivalence with finite index. The equivalence classes of ∼ are
called regions.

Definition 4.1.1. Region graph of M is a finite graph G = (V,E) where the set of
vertices V is the set of regions of M and for every pair of regions r,r′ there is an
edge (r,r′) ∈ E iff P(z,r′)> 0 for all z ∈ r.

The construction is correct because all configurations in the same region have
the same one-step qualitative behaviour as formalized by the following lemma.

Lemma 4.1.2. Let z∼ z′ be configurations and r be a region. We have P(z,r)> 0
iff P(z′,r)> 0.

Proof. For the sake of contradiction, let us fix a region r and a pair of configurations
z∼ z′ such that P(z,r)> 0 and P(z′,r) = 0. Let z = (s,ξ , t) and z′ = (s,ξ ′, t ′).

First, let us assume that the part of P(z,r) contributed by the variable-delay
events V is zero, i.e. ∑e∈V

∫
∞

0 Hit({e}, t) ·Wins({e}, t) dt = 0. Then the set E of
fixed-delay events scheduled with the minimal remaining time in z must be non-
empty, i.e. some e ∈ E. We have

P(z,r) = Succ(s,E)(s′) ·1[ξ̄ ∈ r] ·∏
c∈V

∫
∞

ξ (c)
fc|ξ (c)(y) dy > 0 (4.1)

P(z′,r) = Succ(s,E)(s′) ·1[ξ̄ ′ ∈ r] ·∏
c∈V

∫
∞

ξ (c)
fc|ξ ′(c)(y) dy = 0 (4.2)

where s′ is the control state of the region r and ξ̄ and ξ̄ ′ are the vectors of elapsed
time after the transitions from z and z′, respectively. It is easy to see that from z∼ z′

we get that ξ̄ ∈ r iff ξ̄ ′ ∈ r. Hence, P(z,r) and P(z′,r) can only differ in the big
product in (4.1) and (4.2). For any fixed c ∈ V , we show that

∫
∞

ξ (e) fc|ξ ′(c)(y) dy is
positive. Recall that the density function fc can qualitatively change only on integral
values. Both z and z′ have the same order of events’ values. Hence, the integral is
positive for ξ ′ iff it is positive for ξ . We get P(z′,r)> 0 which is a contradiction.

Second, let us assume that there is a variable-delay event e ∈V such that∫
∞

0
Succ(s,{e})(s′) ·1[ξt ∈ r] · fe|ξ (e)(t) · ∏

c∈V\{e}

∫
∞

t
fc|ξ (c)(y) dy dt > 0

where ξt is the vector of elapsed time after the transition from z with waiting time
t. There must be an interval I such that for every t ∈ I we have that fe|ξ (e)(t) is pos-
itive, 1[ξt ∈ r] = 1, and

∫
∞

t fc|ξ (c)(y) dy > 0 for any c ∈V \{e}. From the definition
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Figure 4.1: A GSMP model of a producer-consumer system on the left and its
region graph on the right. The events p, t, and c model that a packet production,
transport, and consumption is finished, respectively. Below each state label, there is
the set of scheduled events (or the constraints describing the region). There are two
fixed-delay events p and c (with lp = up = lc = uc = 1), and uniformly distributed
variable-delay events t, t’ (with lt = lt’ = 0 and ut = ut’ = 1). In the region graph,
only regions reachable with non-zero probability are depicted. Furthermore, the
edges of the region graph are labelled with event names only for convenience.

of the region relation, this interval I corresponds to an interval between two adja-
cent events in ξ . Since z ∼ z′, there must be also an interval I′ such that for every
t ∈ I′ we have that fe|ξ ′(e)(t) is positive, 1[ξ ′t ∈ r] = 1, and

∫
∞

t fc|ξ ′(c)(y) dy > 0 for
any c ∈V \{e}. Hence, P(z′,r)> 0, contradiction.

Counterexamples After defining the region graph, let us state the examples con-
tradicting statements 1. and 2. above. Let us consider the GSMP depicted in Fig-
ure 4.1. It models a producer-consumer system with three components – a producer,
a transporter and a consumer of packets. The components work in parallel but each
component can process (i.e. produce, transport, or consume) at most one packet at
a time.

Every 1 time unit, a packet is produced. The first production, at time 1.0, moves
the system from the initial state I into the state T. Then, the packet is transported
to the consumer; the transport takes between 0 and 1 time unit (and is uniformly
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distributed). Say it takes 0.9 time unit. Hence, at time 1.9 the consumption starts
in the state C. As the consumption also takes exactly 1 time unit, it will finish at
time 2.9. Before that a new packet is produced at time 2.0 and the system moves to
the state C|T. Then, the ongoing consumption and the transport of the new packet
interleave. If the transport is finished sooner (i.e. before 2.9), the new packet is
placed in a buffer in the state C;C and its consumption will start at time 2.9. If the
transport takes longer, the consumer idles from time 2.9 in the state T until the new
packet is transported, say at time 2.95, and the new consumption begins. Then at
time 3.0 a new packet is produced and the whole procedure is repeated. Notice that
the state T is visited whenever the current transport takes more time than it has ever
taken. Since the transport time is uniform and bounded by 1, the state T is visited
less and less frequently and a smaller and smaller amount of time is spent there on
every visit.

In state T, the whole system can break down and move into ⊥. It is caused by
the event t ′ which occurs uniformly in the interval (0,1). Due to the shorter stays
in state T, the probability of t ′ occurring decreases during the run resulting in the
following lemma. Its formal proof is in Section 4.3.

Lemma 4.1.3. The probability to reach ⊥ from the state I is strictly less than 1.

Observe that the region graph of this simple GSMP coincides with the transition
graph of the GSMP as shown in Figure 4.1 on the right. Hence, in the region graph,
the state ⊥ forms the only BSCC. Thus, Lemma 4.1.3 disproves statement 1 as
summarized by the following theorem.

Theorem 4.1.4. There is a GSMP (with two fixed-delay and two variable delay
events) where the probability to reach any BSCC of the region graph is strictly less
than 1.

Now consider in Figure 4.1 a transition under the event p from the state ⊥ to
the state I instead of the self-loop. This turns the whole region graph into a single
BSCC. We prove that the state⊥ is almost surely visited only finitely often. Indeed,
let p < 1 be the probability to reach⊥ guaranteed by Lemma 4.1.3. The probability
to reach ⊥ from ⊥ again is also p as the only transition leading from ⊥ enters
the initial configuration. Therefore, the probability to reach ⊥ infinitely often is
limn→∞ pn = 0. Hence, the statement 2 of [ACD91; ACD92] is disproved, as well:

Theorem 4.1.5. There is a GSMP (with two fixed-delay and two variable delay
events) with strongly connected region graph and with a region that is reached
infinitely often with probability 0.

Observe that these results not only show incorrectness of some previous algo-
rithms but also the insufficiency of the region construction for qualitative behaviour
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Figure 4.2: A variant of a producer-consumer system without the error state ⊥ and
with two consumer modules. The fixed-delay events p and c have again lp = up =

lc = uc = 1 and the uniformly distributed variable-delay event t has lt = 0 and
ut = 1.

of general GSMP. In Chapter 5, we show that under some restrictions on the GSMP
the region relation captures the qualitative behaviour well enough.

4.2 Performance measures

Let us now turn our attention to the frequency measures in GSMP. In Figure 4.2, we
show an example of a GSMP with two fixed-delay events and one variable-delay
event for which it is not true that the variables d and c are well-defined for almost
all runs. It is a variant of the model from Figure 4.1, but there is no error state ⊥
and the consumer has two modules – one is in operation and the other idles at a
time. When the state T is entered, the consumer switches the modules. The labels 1
and 2 denote which module of the consumer is in operation.

Similarly to the previous example, the state 1 T or 2 T is entered (and the mod-
ules are switched) if and only if the current transport takes more time than it has
ever taken. As the transport time is bounded by 1, it gets harder and harder to break
the record. As a result, the system stays in the current module on average for longer
time than in the previous module. Therefore, the frequencies for 1-states and 2-
states oscillate. Precise computations are in the following subsection. We conclude
the above observation by the following theorem.

Theorem 4.2.1. There is a GSMP (with two fixed-delay events and one variable-
delay event) for which it is not true that the variables c and d are almost surely
well-defined.
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4.3 Formal proofs

Since the models from Figures 4.1 and 4.2 are closely related, we treat them simi-
larly. By saying for example “state T” in the context of the model from Figure 4.2,
we mean any of the states 1 T and 2 T. The key observation is that the state T is en-
tered whenever the current transport takes more time than it has ever taken. As the
transport time is bounded by 1, the difference of the maximal transport time from
1 gets smaller and smaller. We call this difference the distance of a configuration
(s,ξ , t) and define it by 〈ξ (c)−ξ (p)〉. Using this notion, we first build up the tools
needed for the proofs.

At the beginning of the run, the distance it initially set (uniformly on (0,1)) and
the state C|T is reached. The time before the state C|T is reached again is called
an attempt (to lessen the distance). This way, the whole run can be divided into a
sequence of attempts (possibly a finite sequence, if the state ⊥ is reached at the
end) where each attempt takes exactly 1 time unit. An attempt is either successful
or failed. A failed attempt means traversing the cycle C|T – C;C – C – C|T where
the distance stays the same; a successful attempt means traversing the cycle C|T –
T – C – C|T where the distance gets smaller. In each attempt, the probability of
success is d (where d is the current distance) and the probability of failure is 1−d
since t is distributed uniformly.

A phase is a maximum continuous sequence of attempts where exactly the last
one is successful. Observe that in the model from Figure 4.2, the first phase is spent
in 1-state, the second phase in 2-states, the third phase in 1-states, etc.

For the proofs, we need to characterize phases that lessen the distance substan-
tially. A phase is called strong if the newly generated distance is at most half of
the old one. Further, we define a half-life to be a maximum continuous sequence of
phases where exactly the last one is strong. Every run can thus be uniquely decom-
posed into a sequence of half-lives. The random variable Di, j denotes the distance at
the beginning of the j-th phase of the i-th half-life. Denoting the number of phases
in the i-th half-life by L(i) we get Dn−1,L(i) ≥ 2Dn,1.

Proof of Lemma 4.1.3. In the following, we prove that the probability to reach the
state ⊥ is strictly less than 1. Firstly, we prove that we can restrict to quick runs
that have few phases in each half-life. A run is quick if for any i≤H it has at most
2i phases in the i-th half-life where H is the number of half-lives on the run. The
probability that 2i consecutive phases are not strong, i.e. L(i) > 2i, is 1/22i as t is
distributed uniformly. Therefore, the probability that there is i ∈ N with L(i) > 2i
is less than ∑

∞
i=1 1/22i = 1/3. Hence, at least 2/3 of runs are quick.

Secondly, we show that quick runs that never visit ⊥ have positive probability.
From now on, we restrict to quick runs and talk about probability conditioned by the
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set of quick runs. By definition (and simple induction), for every run with at least
i half-lives, it holds Di,1 ≤ 1/2i. As the distance can only get smaller during the
half-life, it also holds Di, j ≤ 1/2i for any j≤ L(i). Since t ′ is distributed uniformly,
the probability that ⊥ is not reached during one phase of the i-th half-life is at least
(1− 1/2i). The probability that ⊥ is not reached during the whole i-th half-life is
at least (1−1/2i)2i. Hence, the probability that ⊥ is never reached is greater than

m :=
∞

∏
i=1

(1−1/2i)2i.

It remains to show that m > 0. This is equivalent to ∑
∞
i=1 ln(1−1/2i)2i >−∞ which

in turn can be rewritten as ∑
∞
i=1 2i ln

(
2i/(2i−1)

)
< ∞. As regards the logarithm,

ln
(

2i

2i−1

)
=

ln(2i)− ln(2i−1)
1

≤ ln′(2i−1) =
1

2i−1

where the inequality is obtained by concavity of ln: the derivative of ln can be
substituted for its approximation in 2i−1. In total, we get

∞

∑
i=1

2i · ln
(

2i

2i−1

)
≤ 2

∞

∑
i=1

i
2i−1

≤ 2
∞

∑
i=1

i
2i−1 = 2 ·4 < ∞

In the following, we prove that in our example there are runs of positive measure
where d and c are not well-defined. Namely, for these runs the partial sums oscil-
late. Let Si, j be the number of attempts in the j-th phase of the i-th half-life, i.e. a
length of this phase. Roughly speaking, we show that there are runs (of overall pos-
itive measure) where some phase is longer than the overall length of all phases up
to that point (causing the frequencies to oscillate). Note that the precise statement
of the lemma implies moreover that this happens even infinitely often on runs of
overall positive measure.

Lemma 4.3.1. There are α > 0 and m > 0, such that for every n > 1 there is a set
Rn of runs of measure at least m satisfying

Sn,1 ≥ α ∑
i=1..n−1
j=1..L(i)

Si, j

Proof. We set α = 1/18 and m = 1/8 and let n > 1 be arbitrary. We define the set
Rn to be the set of all runs σ such that the following conditions hold:

1. Sn,1 > 1/(2Dn,1),
(the length of the “last” phase is above its expected value),
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2. for all 1≤ i < n, L(i)≤ (n− i)+3,
(the half-lives so far have no more phases than 4,5, . . . ,n+ 1,n+ 2, respec-
tively),

3. for all 1≤ i < n and 1≤ j ≤ L(i), Si, j ≤ 3(n− i)/Di, j,
(all phases in previous half-lives are “short” w.r.t their expectations).

Denote D := Dn,1. We firstly prove that Sn,1 ≥ α ∑i=1..n−1, j=1..L(i) Si, j for all runs
in Rn. Observe that by simple induction, we have for all natural i < n and j ≤ L(i),

Di, j ≥ 2n−i ·D. (4.3)

Due to this inequality and requirements 2. and 3., we can bound the overall length
of all previous phases by

∑
i=1..n−1
j=1..L(i)

Si, j ≤ ∑
i=1..n−1
j=1..L(i)

3(n− i)
Di, j

≤
n−1

∑
i=1

((n− i)+3) ·3(n− i)
2n−i ·D

=
n−1

∑
i=1

(i+3) ·3i
2i ·D

≤
∞

∑
i=1

3(i2 +3i)
2i ·D

=
3(6+3 ·2)

D
=

1
2αD

and conclude by the requirement 1.
It remains to prove that measure of Rn is at least m. We investigate the measures

of the runs described by requirements 1.–3. Firstly, the probability that Sn,1 >
1

2Dn,1

is (1−Dn,1)
1/2Dn,1 , which is greater than 1/2 for Dn,1 ≤ 1/2, i.e. for n ≥ 2. Out

of this set of runs of measure 1/2 we need to cut off all runs that do not satisfy
requirements 2. or 3. As for 2., the probability of i-th half-life failing to satisfy 2. is
(1/2)(n−i)+3 corresponding to at least (n− i) + 3 successive non-strong phases.
Therefore, 2. cuts off less than ∑

n−1
i=1 1/2(n−i)+3 = ∑

n−1
i=1 1/2i+3 ≤ ∑

∞
i=1 1/2i+3 =

1/23. From the remaining runs we need to cut off all runs violating 3. Since the
probability of each Si, j failing is (1−Di, j)

3(n−i)/Di, j , the overall probability of all
violating runs is due to (4.3) at most

n−1

∑
i=1

L(i)

∑
j=1

(1−Di, j)
3(n−i)/Di, j =

n−1

∑
i=1

L(i)

∑
j=1

(1−2n−iD)3(n−i)/2n−iD

≤
n−1

∑
i=1

(i+3)(1−2iD)3i/2iD ≤
∞

∑
i=1

(i+3)(1/e)3i

=
4e3−3
(e3−1)2 < 1/4

Altogether the measure of Rn is at least 1/2−1/8−1/4 = 1/8 = m.
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We can now easily finish the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. Due to the previous lemma, there is a set R of runs of
positive measure such that each run of R is contained in infinitely many Rn’s. We
prove that neither d(σ) nor c(σ) is well-defined on any σ ∈ R where (slightly
abusing the notation) d(σ) and c(σ) denotes the sum of frequencies of all 1-states
instead of one single state s. Since attempts last for one time unit, non-existence of
d(σ) implies non-existence of c(σ).

Assume for a contradiction that d(σ) is well-defined. Let d(σ)≤ 1/2, the other
case is handled symmetrically. Because 1-states are visited exactly in odd phases,
we have d(σ) = limn→∞ (∑n

i=1 si ·odd(i))/(∑n
i=1 si) where si is the number of at-

tempts in the i-th phase and odd(i) = 1 if i is odd and 0 otherwise. By the definition
of limit, for every ε > 0 there is n0 such that for all n > n0∣∣∣∣∣∑n

i=1 si ·odd(i)
∑

n
i=1 si

− ∑
n−1
i=1 si ·odd(i)

∑
n−1
i=1 si

∣∣∣∣∣< ε (4.4)

Let ε > 0 be such that α ≥ ε/(1−2ε−d(σ)). Due to Lemma 4.3.1, there is an odd
n > n0 satisfying sn ≥ α ∑

n−1
i=1 si. Denoting A = ∑

n−1
i=1 si and O = ∑

n−1
i=1 si ·odd(i) we

get from (4.4)

O+ sn

A+ sn
− O

A
≥ O+αA

A+αA
− O

A

(∗)
≥

ε ·
(
1− O

A

)
1−d(σ)− ε

(∗∗)
≥ ε · (1−d(σ)− ε)

1−d(σ)− ε
= ε

which is a contradiction with (4.4). Notice that we omitted the absolute value
from (4.4) because for an odd n the term is non-negative. The inequality (∗) is
obtained by substituting ε/(1− 2ε −d(σ)) for α and by straightforward manipu-
lation. In (∗∗) we use, similarly to (4.4), that |OA −d(σ)|< ε .
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Chapter 5

Conditions on Stability

After showing instability in GSMP models with fixed-delay events, we turn our
attention to positive results. First, we identify a stable subclass of GSMP with
fixed-delay events that we call single-ticking GSMP. Second, we address GSMP
observed by DTA and show that the DTA observer does not introduce any instabil-
ity in the model. In contrast to the proof in [BKK+11a], we show it by reduction
to single-ticking GSMP. Third, we provide conditions on stability for a closely re-
lated formalism of deterministic and stochastic Petri nets. We use an existing reduc-
tion [Haa10] to GSMP and again show that the resulting GSMP with fixed-delay
events is single-ticking. Fourth, we conclude the chapter by showing that the fre-
quency measures of single-ticking GSMP not only exist but also can be effectively
approximated. This chapter is based on [BKK+11a; BKK+11b; BKK+13].

5.1 GSMP with Fixed-delay Events

First of all, motivated by the previous counterexamples, we identify the behaviour
of the fixed-delay events that may cause d and c to be undefined. The problem
lies in fixed-delay events that can immediately schedule themselves whenever they
occur; such an event can occur periodically like ticking of clocks. In the exam-
ple of Figure 4.1, there are two such events p and c. The phase difference of their
ticking gets smaller and smaller, causing the unstable behaviour. For the follow-
ing definition we generalize the ticking of one event to cyclic periodic occurrence
of multiple fixed-delay events. Furthermore, the definition is based on the region
graph, see Definition 4.1.1.

We say that a set of fixed-delay events E is ticking in a region r if there is a
cycle r1, . . . ,rn in the region graph and sets of fixed-delay events E1 . . . ,En with
r1 = rn = r and E1 = En = E such that each Ei is a maximal set of events with the
same fractional value in ri and upon traversing the cycle,

• each event scheduled to occur in r either occurs or stops being scheduled;

• the sets of fixed-delay events schedule each other in the following sense. For
each 1≤ i< n either a set of other events E∩Ei = /0 occurs in ri and Ei+1⊆Ei
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5. CONDITIONS ON STABILITY

(some events from Ei may stop being scheduled in ri+1); or a subset E ⊆Ei of
the events occur and in ri+1 the set F ⊆Ei stops being scheduled and the set of
fixed-delay events G is newly scheduled such that Ei+1 = ((Ei \E)\F)∪G.
Notice that E are the events of Ei with their elapsed time closest to their delay
in ri.

When traversing this cycle forever, due to the first condition the time diverges, due
to the second condition the fixed-delay events occur periodically like ticking of the
clock.

Definition 5.1.1. A GSMP is called single-ticking if in every region of its region
graph there is at most one set of ticking events.

From now on we restrict to single-ticking GSMP and prove our main positive
result.

Theorem 5.1.2. In single-ticking GSMP, the random variables ds and cs are well-
defined for almost every run and any s ∈ S. Furthermore, almost every run reaches
a BSCC of the region graph and for each BSCC B and s ∈ S there are ds,cs ∈ [0,1]
such that ds(σ) = ds and cs(σ) = cs for almost every run σ reaching the BSCC B.

The rest of this section is devoted to the proof of Theorem 5.1.2. First, we show
that almost all runs end up trapped in some BSCC of the region graph. Second, we
solve the problem while restricting to runs that start in a BSCC (as the initial part of
a run outside of any BSCC is not relevant for the long run average behaviour). We
show that in a BSCC, the variables ds and cs are almost surely constant. The second
part of the proof relies on several standard results from the theory of general state
space Markov chains. Formally, the proof follows from Propositions 5.1.4 and 5.1.8
stated below.

Remark 5.1.3. Observe that the definition of single-ticking GSMP is slightly more
complicated than in [BKK+11b]. This is necessary for Section 5.2 where we show
by a simple reduction to single-ticking GSMP the similarly complicated result
of [BKK+11a] that GSMP observed by a DTA are stable as well.

5.1.1 Reaching a BSCC

Proposition 5.1.4. In single-ticking GSMP, almost all runs reach a BSCC of the
region graph.

The rest of this subsection forms the proof of Proposition 5.1.4. The proof uses
methods similar to [ACD92]. By definition, the process moves along the edges of
the region graph. From every region, there is a path of minimal length through the
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Figure 5.1: Intuition for δ -separated parts of regions.

region graph into a BSCC, let n be the maximal length of all such paths. Hence,
in at most n steps the process reaches a BSCC with positive probability from any
configuration. Observe that if this probability was bounded from below, we would
eventually reach a BSCC from any configuration almost surely.

However, such a bound does not exist in general; the transition probabilities
between two regions approach zero as the starting configuration approaches the
boundary of its region (i.e. as the fractional parts of two clocks approach each
other). The left part of Figure 5.1 shows a part of the region graph of a system
with a single state and two fixed-delay events with delay 3. There is also a single
variable-delay event, which is positive on (0,1) and its elapsed time is not depicted.
Now observe that if the starting configuration z comes closer and closer to the di-
agonal, the probability that the (only) event happens in the region r1 is smaller and
smaller. Similarly, if z comes closer and closer to the bottom or right boundary of
the region, respectively, the probability that the event happens in the region r2 or r0

is smaller and smaller.
Notice that the transition probabilities depend on the difference of the fractional

values of the clocks, we call this difference separation. The δ -separated parts of
regions are depicted in grey in the right part of Figure 5.1. Here, we are either at
least δ -away from the boundary of the region or exactly at the boundary.

Definition 5.1.5. Let δ > 0. We say that a configuration (s,ξ , t) is δ -separated if
for every x,y ∈ {0}∪{ξ (e) | e ∈ E(s)}, we have either |〈x〉−〈y〉|> δ or 〈x〉= 〈y〉.

We fix a δ > 0. To finish the proof using the concept of δ -separation, we need
two observations. First, from any configuration we reach in m steps a δ -separated
configuration with probability at least q> 0. Second, the probability to reach a fixed
region from any δ -separated configuration is bounded from below by some p > 0.

The second observation only holds if we can bound from below the events’ den-
sities; this is satisfied in inner configurations. We say that a configuration (s,ξ , t) is
inner if ξ (e)≤ 2r+B+1 for every e∈E(s). (Recall that r is the bound on the con-
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ditional expectations of all events and B = max
(
{`e,ue | e∈ E }\{∞}

)
. The reason

why the bound is 2r +B+ 1 is technical, the main idea is that the events’ values
are bounded by some constant.) The observations are formulated in Lemmata 5.1.6
and 5.1.7.

Lemma 5.1.6. There is δ > 0, m ∈N and q > 0 such that from every configuration
we reach a δ -separated inner configuration in m steps with probability at least q.

Proof. In the following, by value of an event e we mean the fractional part 〈ξ (e)〉
when the vector of elapsed time ξ is clear from context. Let us fix a configuration z.
In the following proof, we restrict the probabilistic behaviour in such a way that all
the runs satisfying this restriction starting in z have probability at least q and visit a
δ -separated inner configuration in m steps.

There are two sources of stochastic behaviour: (i) occurrence of events and (ii)
choice of successor states. As regards the choice of the successor for a given set of
events, we do not restrict the behaviour at all. Furthermore, we cannot restrict when
the fixed-delay events occur; we only restrict the timing of variable-delay events in
two phases as follows.

1. In the first phase, we aim at reaching an inner configuration. It lasts m1 := 2r ·
|E | · 2+ |E | steps. For each variable-delay event already scheduled in z, we
(a) restrict that within the first 2r time units of the first phase it either occurs
or stops being scheduled. Furthermore, (b) the elapsed time of each variable-
delay event newly scheduled within the first phase never exceeds 2r during
the first phase and (c) any variable-delay event newly scheduled within the
first phase never occurs before its elapsed time reaches 1/2. We show that
the probability of runs satisfying this restriction is bounded from below. As
regards (a), the bound is obtained by the Markov’s inequality stating that for
a random variable X with expected value E(X) and a∈R>0 we have P(X ≥
a)≤E(X)/a. Indeed the expected time to occurrence of each scheduled event
is ≤ r and the probability that such an event occurs or stops being scheduled
before 2r is ≥ 1/2. As the events are independent, we get an overall bound
of 1/2|E |. As regards (b) and (c), the bound is obtained as there is p > 0 such
that for each event e, we have

∫ 2r
1/2 fe(x)dx > p. Due to (c), the first phase

takes at least 2r time units. Hence, due to (a) and (b), each scheduled event
has elapsed time at most 2r at the end of the first phase.

2. In the second phase, we aim at reaching a δ -separated configuration for sep-
aration δ = 1/(4 · |E |). We restrict that (1) each variable-delay occurs within
the first time unit of its support (i.e. at latest one time unit after it exceeds its
lower bound). If the event is already above its lower bound at the beginning
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of the second phase, we restrict it to occur in the first time unit of the second
phase.

In addition, we (2) restrict the times where each variable-delay event occurs
within its allowed unit interval so that after each occurrence of a variable-
delay event, no other variable-delay event occurs within time δ . Now we
explain in greater detail the restriction (2) and why the runs satisfying (1)
and (2) have probability bounded from below.

The restrictions are based on the values of the events, i.e. on the fractional
parts of the events’ elapsed times. Hence, we focus on the [0,1] line segment
modulo one. For each scheduled variable-delay event, we place on the line
segment a reservation bar of length δ that we shift along with the events’
values, as the time flows.1 During the second phase, we restrict each variable-
delay event to occur when its reservation bar passes over 0 and when (1) is
satisfied.

At last, we explain the placement of the reservation bars. We divide the [0,1]
line segment into 4 · |E | slots of length δ . We say that a slot is occupied if it
contains value of some fixed-delay event or a piece of a reservation bar; or
empty, otherwise. Whenever a variable-delay event e gets newly scheduled
during the first or the second phase, we place its reservation bar of length δ

on an empty slot with its left and right neighbouring slots (modulo one) also
empty. Such a slot must always exist since there are 4 · |E | slots and each
event of E \{e} occupies at most two slots at a time (and two neighbouring
slots that must stay empty).

The second phase lasts for m2 := |V | steps where |V | is the size of the region
graph. The probability is bounded from below since for each variable-delay
event e, the probability that it occurs with its elapsed time within any δ -long
subinterval of the interval [le,min{ue,2r+B+1}] is bounded from below.

The resulting configuration is δ -separated from two reasons. First, variable-delay
events are separated from each other and from fixed-delay events because of the
way we place the reservation bars. Second, each fixed-delay event scheduled in the
resulting configuration is separated from other fixed-delay events because during
the second phase at least one cycle in the region graph is traversed. Each fixed-
delay event has been scheduled either by the ticking events on that cycle (observe
that the definition of δ -separation allows two events to have equal value); or by an
occurrence of some variable-delay event separated from other fixed-delay events

1. We treat the reservation bars also modulo one, i.e. when a piece of a reservation bar exceeds 1, it
actually overlaps to the beginning of the line segment.

55



5. CONDITIONS ON STABILITY

(possibly followed by occurrences of fixed-delay events not changing the value and
thus not changing the separation).

The resulting configuration is inner because after the first phase, all the variable-
delay events have elapsed time below 2r, and in the second phase we do not allow
any event to overpass the value 2r+B+1.

Notice that Lemma 5.1.6 does not hold for general GSMP. As in the example
of Figure 4.1, the separation may be non-increasing for all runs. On the contrary,
Lemma 5.1.7 does hold even for unrestricted GSMP.

Lemma 5.1.7. For every δ > 0 and k ∈ N there is p > 0 such that for any regions
r, r′ connected by a path of length k and for any δ -separated inner configuration
z ∈ r, we have Pk(z,r′)> p.

Proof. Let z ∈ r = r0 and r0,r1, . . . ,rk be a shortest path in the region graph from
the region r = r0 to the region r′ = rk. We restrict to runs that follow this path so
that in each step they lose two thirds of the separation. At last, a (δ/3k)-separated
configuration in the target region rk is reached. We show how we obtain the overall
bound on probabilities from bounds on every step.

In each step either a variable-delay event or a set of fixed-delay events occur. Let
δi be the separation in the current step. To follow the region path, a specified event
must occur in an interval between two specified values which are δi-separated. A
fixed-delay event occurs in this interval for sure because it has been scheduled
this way. For a variable-delay event, we divide this interval into thirds and restrict
the event to occur in the middle subinterval of length δi+1. This happens with a
probability bounded from below if the events’ densities are bounded from below.
Furthermore, to follow the path in the region graph, no other event can occur sooner.
Every other event has at least δi+1 to its upper bound; the probability that it does
not occur is again bounded from below if the events’ densities are bounded from
below.

It remains to show that the events’ densities are bounded from below on this
region path. Notice that not all the configurations on the path have to be inner. Still,
the time the path must take is bounded by |V |(B+ 1) since the shortest path in
the region graph must be shorter than the size of the region graph |V |; and each
step takes at most (B+ 1) time because waiting more time does not change the
target region of that step (recall that B = max

(
{`e,ue | e ∈ E } \ {∞}

)
). All the

(conditional) events’ densities are bounded from below in the interval [0,2r+B+

1+ |V |(B+1)].

By repeating the two observations ad infinitum, we reach some BSCC almost
surely concluding the proof of Proposition 5.1.4.
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5.1.2 Frequency in a BSCC

From now on, we deal with the bottom strongly connected components that are
reached almost surely. Hence, we assume that the region graph G is strongly con-
nected. We have to allow an arbitrary initial configuration z0 = (s,ξ , t); in particu-
lar, ξ does not have to be a zero vector.2

Proposition 5.1.8. In a single-ticking GSMP with strongly connected region graph,
there are values ds,cs ∈ [0,1] for each s∈ S such that for any initial configuration z0

and for almost all runs σ starting from z0, we have that ds and cs are well-defined
and ds(σ) = ds and cs(σ) = cs.

Let us fix s ∈ S. We assume that the region graph is aperiodic in the following
sense. A period p of a graph G is the greatest common divisor of lengths of all
cycles in G. The graph G is aperiodic if p = 1. First, we assume that G is aperiodic,
later we discuss the opposite case. We show that the aperiodic chain Φ is in some
sense stable. Namely that (i) Φ has a unique invariant measure that is independent
of the initial measure and (ii) the strong law of large numbers (SLLN) holds for Φ.

Standard results for general state space Markov chains yield (i) and (ii) for chains
where the whole set of configurations is small. Roughly speaking, it means that the
transient distribution after n steps is similar (up to a factor of ε) for all starting
configurations z. Intuitively, the process “regenerates” to some extent each n steps.

Definition 5.1.9. Let n ∈N, ε > 0, and κ be a probability measure on (Γ,F ). The
set Γ is (n,ε,κ)-small if for all z ∈ Γ and A ∈F we have that Pn(z,A)≥ ε ·κ(A).
The proof of the following lemma is the most demanding part of this chapter and
we deal with it in the next subsection.

Lemma 5.1.10. There is n ∈ N, ε > 0, and κ such that Γ is (n,ε,κ)-small.

As a further step, we show how smallness of the state space implies (i) and (ii).

Lemma 5.1.11. If the set of configurations Γ of a GSMP is (n,ε,κ)-small,

(i) there is a unique probability measure π on (Γ,F ) that is invariant, i.e.

π(A) =
∫

Γ

π(dx)P(x,A) for all A ∈F ,

(ii) Γ satisfies the strong law of large numbers, i.e. for each function h : Γ→ R
such that Eπ [h]< ∞, we almost surely have

lim
n→∞

∑
n−1
i=0 h(Φi)

n
= Eπ [h], (5.1)

where Eπ [h] is the expected value of h according to the invariant measure π .

2. Technically, the initial measure is µ(A) = 1 if z0 ∈ A and µ(A) = 0, otherwise.
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Proof. The theorem is a consequence of standard results for GSSMCs; we only
give pointers to appropriate places in [MT09]. Since Γ is (m,ε,ν)-small, observe
that

• the chain is by definition ϕ-irreducible for ϕ = ν ; thus also ψ-irreducible
by [MT09, Proposition 4.2.2];

• Γ is by definition also (a,ε,ν)-petite (see [MT09, Section 5.5.2]), where a
is the Dirac distribution on N0 with a(m) = 1, a(n) = 0 for n 6= m.

As Γ is trivially not uniformly transient, the chain Φ is recurrent by [MT09, Theo-
rem 8.0.1], Thus by [MT09, Theorem 10.0.1], there exists a unique invariant proba-
bility measure π . Since π is trivially also subinvariant, the chain Φ is positive Harris
by [MT09, Theorem 10.4.10 (ii)]. Therefore, (ii) is obtained by applying [MT09,
Theorem 17.0.1 (i)].

Next, we show that (i) and (ii) imply the proposition. We set in the equality (5.1)
the function h((s′,ξ , t)) to the delta function δ (s′) where δ (s′) = 1 if s′ = s, and 0,
otherwise. We have Eπ [h]< ∞ since h≤ 1. From (5.1) we obtain that almost surely

ds = lim
n→∞

∑
n−1
i=0 h(Φi)

n
= Eπ [h].

As a result, ds is well-defined and equals the constant value Eπ [h] for almost all
runs. We treat the variable cs similarly. Here, we assume w.l.o.g. that each state s′

has an unique predecessor state s′. Indeed, we can extend the state space with the
information about the previous state (the initial state having itself as the predeces-
sor). Let W ((s′,ξ , t)) = t and τ((s′,ξ , t)) =W ((s′,ξ , t)) ·δ (s′). Since all the events
have finite expectation, we have Eπ [W ]< ∞ and Eπ [τ]< ∞. Now we show that

cs =
Eπ [τ]

Eπ [W ]
,

yielding that cs is well-defined and equals the constant Eπ [τ]/Eπ [W ] for almost all
runs. Let us consider a run σ = (s0,ξ0, t0) (s1,ξ1, t1) · · · . We have that

cs(σ) = lim
n→∞

∑
n−1
i=0 δ (si) · ti+1

∑
n−1
i=0 ti+1

= lim
n→∞

∑
n
i=0 δ (si) · ti

∑
n
i=0 ti

= lim
n→∞

∑
n−1
i=0 δ (si) · ti

n
· n

∑
n−1
i=0 ti

=
limn→∞(∑

n−1
i=0 δ (si) · ti)/n

limn→∞(∑
n−1
i=0 ti)/n

=
limn→∞(∑

n−1
i=0 τ((si,ξi, ti)))/n

limn→∞(∑
n−1
i=0 W ((si,ξi, ti)))/n

=
Eπ [τ]

Eπ [W ]

The last equality follows from (5.1) and by proving the existence of the limit it
also justifies the previous manipulations with the limits. This concludes the proof
of Proposition 5.1.8 under the aperiodicity assumption.
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If the region graph has period p > 1, we can employ the standard technique
and decompose the region graph (and the Markov chain) into p aperiodic com-
ponents [MT09, Proposition 5.4.6]. Namely, we decompose Φ into p stochastic
processes Φ0, . . . ,Φp−1 where each Φk makes steps corresponding to p steps of the
original process Φ and the initial measure of Φk is αk(A) =

∫
x∈Γ

µ(dx) ·Pk(x,A)
for each A ∈ F . Each Φk is aperiodic and hence small (this follows by slightly
generalizing the arguments of Lemma 5.1.10). By the same arguments as above,
each Φk has frequencies cs and ds almost surely well-defined and equal to some
constants ds,k and cs,k = τs,k/Ws,k. Finally, by a straightforward manipulation, we
obtain the frequency of visits to s in M as an average of the corresponding fre-
quencies in Φ0, . . . ,Φp−1, i.e. ds(ρ) = 1/p ·(ds,0+ · · ·+ds,p−1) and cs(ρ) = (τs,0+

· · ·+ τs,p−1)/(Ws,0 + · · ·+Ws,p−1) for almost all runs ρ .

5.1.3 Formal proofs

In the whole subsection, we prove Lemma 5.1.10. We show that there is a set of
configurations C such that

(I) there is o ∈ N and ζ > 0 such that for every z ∈ Γ we have Po(z,C)≥ ζ ;

(II) there is p ∈ N, η > 0, and a probability measure κ such that for every z ∈C
and A ∈F we have Pp(z,A)≥ η ·κ(A).

The lemma is then obtained by setting n := o+ p and ε := ζ ·η . We choose some
reachable inner region r either with no set of ticking events or with its set of ticking
events having the greatest value among all events scheduled in r. There clearly is
such a region. We choose C to be the set of δ -separated configurations in r where
δ is fixed below.

The delicate part about (I) is that this set has to be reached with positive prob-
ability from any configuration in exactly o steps. First, from Lemma 5.1.6, there
is δ ′, m, and q such that we reach from any z ∈ Γ in m steps some δ ′-separated
configuration z′ with probability at least q. From z′, we need to get to C. We use a
standard result from the theory of Markov chains, see for example [Ros06, Lemma
8.3.9], that in every ergodic Markov chain there is m′ such that between any two
states there is a path of length exactly m′. The same result holds for the aperiodic
region graph G. Hence, from z′ we have a path of length m′ to the region r. From
Lemma 5.1.7, we have q′ > 0 such that we reach r from z′ in m′ steps with proba-
bility at least q′. Furthermore, we end up in a (δ ′/3m′)-separated configuration of
the region r. Hence, we set δ = δ ′/3m′ , ζ := q ·q′, o := m+m′, and we obtain the
first property.

As regards the property (II), we show that there is p ∈ N, δ ′ > 0, and a configu-
ration z∗ such that from any z ∈C, there is a δ ′-wide path of length p from z to z∗.
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Furthermore, we require that these paths have the same trace. We then show that
such paths guarantee reaching a neighbourhood of z∗ with “uniform” probability
yielding the measure κ and the constant η > 0. Let us define the notions.

Definition 5.1.12. For δ ′ > 0, we call a path (s0,ξ0, t0) · · ·(sp,ξp, tp) δ ′-wide if
(1) all its configurations are δ ′-separated and inner and (2) no bounded variable-
delay event gets fired δ ′-close to its upper bound, i.e. for any 0≤ i< p and bounded
e ∈ E(si) we have ξi(e)+ ti+1 < ue−δ ′.

We say that a path (s0,ξ0, t0) · · ·(sp,ξp, tp) has a trace r0E1r1E1 · · ·Eprp if for ev-
ery 0≤ i≤ p we have si ∈ ri and for every 0< i≤ p we can get from (si−1,ξi−1, ti−1)

to (si,ξi, ti) via occurrence of the set of events Ei after time ti.

Further, total time of a path (s0,ξ0, t0) · · ·(sp,ξp, tp) is ∑
p
i=1 ti and by M we denote

the sum of ue of all fixed-delay events. We first show the existence of δ -wide paths.

Lemma 5.1.13. There is p∈N, δ ′> 0, trace T = r0E1 · · ·Eprp, and a configuration
z∗ such that from any z∈C, there is a δ ′-wide path to z∗ with trace T and total time
t ≥M.

Proof. In the proofs of this subsection, by saying value of an event e, we again
mean the fractional part 〈ξ (e)〉 when the vector of elapsed time ξ is clear from
context. We use a similar concept as in the proof of Lemma 5.1.6. Let us fix a z ∈C
and recall that z is δ -separated. Let a be the greatest value of all event scheduled
in z. Observe, that no value is in the interval (a,a+δ ). When we build the δ ′-wide
path step by step, we use a variable s denoting start of this interval of interest which
flows with time. Before the first step, we have s := a. After each step, which takes
t time, we set s := 〈s+ t〉.

In the interval [s,s+δ ] we make a grid of 2 · |E | points that we shift along with s,
and set δ ′ = δ/(2 · |E |). On this grid, a procedure similar to the δ -separation takes
place. We build the δ ′-wide path by choosing sets of events Ei to occur, waiting
times ti of the individual transitions, and target states zi after each transition so that

• every variable-delay event occurs at a soonest possible moment such that it
is exactly at an empty point of the grid (i.e. at a time when an empty point
has value 0), and

• the built path is “feasible”, i.e. all the specified events can occur after the
specified waiting time, and upon each occurrence of a specified event we
move to the specified target state with positive probability,

These rules guarantee that the path we create is δ ′-wide. Indeed, the initial con-
figuration is inner and δ ′-separated since δ ′ < δ ; upon every new transition, the
δ ′-neighbourhood of 0 is empty; and every variable-delay event occurs at a point

60



5. CONDITIONS ON STABILITY

different from its current point, whence it occurs at least δ ′ prior to its upper bound.
Furthermore, no event occurs after a delay greater than 2r+B+1 because it could
occur also at least one time unit sooner (contradicting the first rule). It is easy to see
that such choices are possible since there are only E events, but 2 · |E | points (thus
in the course of every time unit there are enough empty points for all the events to
occur).

Now we show that this procedure lasts only a fixed amount of steps before all
the scheduled events lie on the grid. Notice that if there is a set of ticking events in
r, their value lies at a point of the grid from the very beginning because we define
the grid adjacent to their value. Value of any other scheduled fixed-delay event gets
eventually placed at a point of a grid. Indeed, every such event is scheduled by a
variable-delay event after traversing one cycle, i.e. after |V | steps, since we assume
a single-ticking GSMP. In total, after p := |V |+1 steps with trace r0E1 · · ·Eprp, we
can set z∗ := zp.

It remains to show that from any other δ ′-separated configuration z′ ∈ r, we can
build a δ ′-wide path of length p, with trace r0E1 · · ·Eprp that ends in z∗. We start in
the same region. From the definition of the region relation and from the fact that all
events occur in the empty interval (a,a+δ ) we get the following. By appropriately
adjusting the waiting times so that the events occur at the same points of the grid
as before, we can follow the same trace going through the same regions and build
a path z′0 . . .z

′
p such that z′p = z∗. Indeed, all scheduled events have the same value

in z′p as in zp because they lie on the same points of the grid. In fact, this holds for
z′p−1 and zp−1 as well (because in the first p−1 steps at least one cycle is traversed)
but t ′p−1 6= tp−1. Finally, also t ′p and tp have the same value in z′p as in zp because
there is no need to alter the waiting time in the last step. By the same arguments as
before, the built path is also δ ′-wide.

Now we show how δ ′-wide paths guarantee reaching the neighbourhood of z∗

with “uniform” probability. Hence, the property (II) is directly yielded by connect-
ing Lemmata 5.1.13 and 5.1.14 concluding the proof of Lemma 5.1.10.

Lemma 5.1.14. Let δ ′> 0, p∈N, T = r0E1 · · ·Eprp be a trace, and (sp,ξp, tp) be a
configuration. There is a probability measure κ and η > 0 such that the probability
satisfies Pp((s0,ξ0, t0),Y ) ≥ η ·κ(Y ) for any Y ∈F and any (s0,ξ0, t0) such that
there is a δ ′-wide path (s0,ξ0, t0) · · ·(sp,ξp, tp) with trace T and total time t ≥M.

Proof. Notice that all delays’ densities are bounded from below by some cD > 0
on the interval [0,2r]. Since we assume inner paths, we can make use of this bound.

We will find a set of configurations Z “around” the state zp = (sp,ξp, tp) and
define the probability measure κ on this set Z such that κ(Z) = 1. Then we show
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for each measurable Y ⊆ Z the desired property.
Intuitively, configurations around zp are of the form (sp,ξ

′
p, t
′
p) where each ξ ′p(e)

is either exactly ξp(e) or in a small interval around ξp(e) (and the same for t ′p and
tp). We now discuss which case applies to which event e for a fixed trace T . All
the following notions are defined with respect to T . Let G0, . . . ,Gp be the sets of
events such that each Gi is either ticking in ri or empty. Furthermore, we require
that Gi is empty iff either there are no ticking events in ri or the ticking events
“died” earlier, i.e. some G j is empty for j < i. We say that an event e ∈ E(sp) is
originally scheduled in the i-th step by f if

• either f ∈ Gi−1 or f is a variable-delay event; and
• there is k ≥ 1 and a chain of events e1 ∈ Ec1 , . . . ,ek ∈ Eck such that

– e1 = f , c1 = i and for 2 ≤ i ≤ k we have that each ei is a fixed-delay
event such that ei 6∈ Gi;

– for 1≤ i < k we have that occurrence of each Eci newly schedules ei+1

and occurrence of Eck newly schedules e; and

– e stays scheduled since, i.e. e ∈ E(sck)∩·· ·∩E(sp−2)∩E(sp−1).

Notice that the length of the last step tp is also a part of the state space. Therefore,
it is important to study how we can affect it. We say that the last step is variable if
Ep is either a singleton of a variable-delay event or all the events in Ep are originally
scheduled by a variable-delay event. We say that the last step is fixed otherwise,
i.e. if Ep ⊆ Gp or all events from Ep are originally scheduled by some e ∈ Gi for
some i ∈ N0.

Intuitively, we cannot alter the value of an event e on the trace T (i.e., ξ ′p(e) =
ξp(e)) if the last step is fixed and e is originally scheduled by the ticking event. In
all other cases, the value of e can be altered such that ξ ′p(e) lies in a small interval
around ξp(e). The rest of the proof is divided in two cases.

The last step is fixed We divide the events E(sp) into sets A, B, and C as follows

e ∈ A if e is originally scheduled by a variable-delay event and 〈ξp(e)〉 6= 0;

e ∈ B if e is originally scheduled by a variable-delay event and 〈ξp(e)〉= 0;

e ∈C if e is originally scheduled by a ticking event from some Gi.

Let a1, . . . ,ad be the distinct fractional values of the events A in the vector of
elapsed time ξp ordered increasingly by the step in which the corresponding events
were originally scheduled. This definition is correct because two events with the
same fractional value must be originally scheduled by the same event in the same
step. Furthermore, let F1, . . . ,Fd be the corresponding sets of events, i.e. 〈ξp(ei)〉=
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z0 z1 z2 z3 z4 z5 z6

t1 t2 t3 t4 t5 t6

F1 := 0
r(1) = 2

F2 := 0
r(2) = 3

F3 := 0
r(3) = 5

v1 v2 v3 0

path σ

values
in z6
and z

path σ ′

paths σ̄

z0 z′1 z′2 z′3 z′4 z′5 z′6 = z

t ′1 t ′2 :=
t2 +a1− v1

t ′3 := t3+t2−
t ′2 +a2− v2

t ′4 t ′5 :=
t5 +a3− v3

t ′6

z0 z̄1 z̄2 z̄3 z̄4 z̄5 z̄6 ∈ Y

t̄1 :=
t ′1±
δ ′/4

t̄2 :=
t ′1− t̄1+
t ′2±γ/2

t̄3 :=
t ′1− t̄1+
t ′2− t̄2+
t ′3±γ/2

t̄4 :=
t ′1−

t̄1+t ′2−
t̄2+t ′3−
t̄3+t ′4±

δ ′/4

t̄5 :=
t ′1− t̄1+
· · · +
t ′4− t̄4+
t ′5±γ/2

t̄6 :=
t ′1− t̄1+
· · · +
t ′5− t̄5+

t ′6

Figure 5.2: Illustration of paths leading to the set Y . In the original path σ on
the top, there are marked the times when the events F1, F2, and F3 get originally
scheduled. This path is in the first phase altered to σ ′ that reaches the target state z
(its values v1,v2, and v3 are depicted between σ and σ ′ by their distance to 0 on the
right). In the second phase, a set of paths that reach Y is constructed by allowing
imprecision in the waiting times – the transition times are randomly chosen inside
the hatched areas. Notice that the random choice within the large intervals does
not influence the values in z̄6. The values are only influenced by the choice in the
smaller intervals; the size of the smaller intervals is γ/2, i.e. depends on the size
of the d-dimensional hypercube Y . Hence, to get a probability bound linear with
respect to κ(Y ), at most d smaller intervals can be used. Transitions with fixed
delay are omitted from the illustration (except for the last transition).

ai for any ei ∈ Fi. We call a configuration z a target configuration if z ∼ zp and all
events e ∈ (B∪C) have the same value in z and zp. We treat a target configuration
as a d-dimensional vector describing the distinct values for the sets F1, . . . ,Fd . A
δ ′-neighbourhood of a target configuration z is the set of configurations {z+C |
C ∈ (−δ ′,δ ′)d}. Observe that the δ ′-neighbourhood is a d-dimensional space. We
set Z to be the (δ ′/4)-neighbourhood of zp (the reason for dividing δ ′ by 4 is tech-
nical and will become clear in the course of this proof). Let κd denote the standard
Lebesgue measure on the d-dimensional affine space and set κ(Y ) := κd(Y )/κd(Z)
for any measurable Y ⊆ Z.

In order to prove the probability bound for any measurable Y ⊆ Z, it suffices to
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prove it for the generators of Z, i.e. for d-dimensional hypercubes centred around
some state in Z. Let us fix an arbitrary z ∈ Z and γ < δ ′/4. We set Y to be the
γ-neighbourhood of z. In the rest of the proof we will show how to reach the set Y
from the initial state (s0,ξ0, t0) in p steps with high enough probability – linear in
κ(Y ).

We show it by altering the original δ ′-wide path σ = (s0,ξ0, t0) · · ·(sp,ξp, tp). In
the first phase, we reach the fixed z instead of the configuration zp. We find waiting
times t ′1, . . . , t

′
p that induce a path σ ′ = (s0,ξ0, t0) (s1,ξ

′
1, t
′
1) . . .(sp,ξ

′
p, t
′
p) with trace

T such that (sp,ξ
′
p, t
′
p) = z. In the second phase, we define using σ ′ a set of paths

to Y . We allow for intervals I1, . . . , Ip such that for any choice t̄1 ∈ I1, . . . , t̄p ∈ Ip we
get a path σ̄ = (s0,ξ0, t0) (s1, ξ̄1, t̄1) . . .(sp, ξ̄p, t̄p) such that (sp, ξ̄p, t̄p) ∈ Y . From
the size of the intervals for variable-delay events and from the bound on densities
cD we get the overall bound on probabilities. Let us start with the first step.

Let v1, . . . ,vd be the distinct values of the target configuration z. Recall that |vi−
ai| < δ ′/4 for each i. Let r(1), . . . ,r(d) be the indices such that all events in Fi

are originally scheduled in the step r(i). Notice that each Er(i) is a singleton of a
variable-delay event. As illustrated in Figure 5.2, we set for each 1≤ i≤ p

t ′i =


`e−ξi−1(e) if e ∈ Ei is fixed-delay,

ti +∑
i−1
k=1(tk− t ′k)+a j− v j if i = r( j) for 1≤ j ≤ d,

ti +∑
i−1
k=1(tk− t ′k) otherwise.

Intuitively, we adjust the variable-delays in the steps preceding the original schedul-
ing of sets F1, . . . ,Fd whereas the remaining variable-delay steps are kept in sync
with the original path σ . The absolute time of any transition in σ ′ (i.e. the position
of a line depicting a configuration in Figure 5.2) is not shifted by more than δ ′/4
since |vi−ai|< δ ′/4 for any i. Thus, the difference of any two absolute times is not
changed by more than δ ′/2. This difference bounds the difference of |ξi(e)−ξ ′i (e)|
for any i and e ∈ E . Hence, σ ′ is (δ ′/2)-wide because σ is δ ′-wide. Furthermore,
σ ′ goes through the same regions as σ and performs the same sequence of events
scheduling. Building on that, the desired property z′p = z is easy to see.

Next we allow imprecision in the waiting times of σ ′ so that we get a set of paths
of measure linear in κd(Y ) = γ d . In each step we compensate for the imprecision
of the previous step. Formally, let Ti denote t ′i +∑

i−1
k=1(t

′
k− t̄k). For each 1 ≤ i ≤ p

we constraint

t̄i ∈


[Ti,Ti] if Ei are fixed-delay events,

(Ti− γ

2 , Ti +
γ

2) if i = r( j) for 1≤ j ≤ d,

(Ti− δ ′

4 , Ti +
δ ′

4 ) otherwise.
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path σ ′

paths σ̄

the imprecision ±δ ′/6 is not com-
pensated for after the events Er(1)

z0 z′1 z′2 z′3 z′4 z′5 z′6 = z

t ′1 t ′2 t ′3 t ′4 t ′5 t ′6
z0 z̄1 z̄2

z̄3 z̄4 z̄5 z̄6 ∈ Y

t̄1 :=
t ′1±
δ ′/6

t̄2 :=
t ′1− t̄1+
t ′2±γ/2

t̄3 :=
t ′1− t̄1+
t ′2− t̄2+
t ′3±γ/2

t̄4 :=
t ′1−

t̄1+t ′2−
t̄2+t ′3−
t̄3+t ′4±

δ ′/6

t̄5 :=
t ′1− t̄1+
· · · +
t ′4− t̄4+
t ′5±γ/2

t̄6 :=
t ′1− t̄1+
· · · +
t ′5− t̄5+
t ′6±γ/2

Figure 5.3: Illustration of construction of σ̄ for the empty set C and the last step
variable.

The difference to σ ′ of any two absolute times is not changed by more than δ ′/2
because the imprecision of any step is bounded by δ ′/4. Because σ ′ is (δ ′/2)-
wide, any path σ̄ goes through the same regions as σ ′. The difference of the value
of events in any Fi in the state z̄p from the state z is at most γ/2 because it is only
influenced by the imprecision of the step preceding its original scheduling. Hence,
z̄p ∈ Y .

By v we denote the number of variable-delay singletons among E1, . . . ,Ep. From
the definition of P, it is easy to prove by that

Pp(z0,Y ) ≥ pp
min · (cD · γ)

d · (cD ·δ ′/2)v−d ≥ (pmin · cD/2)p · γd ·δ ′p−d

Since κd(Y ) = (2 · γ)d and κd(Z) = (2 ·δ ′/4)d , we have κ(Y ) = κd(Y )/κd(Z) =
(4γ/δ ′)d . We get Pp(z0,Y ) ≥ κ(Y ) · (δ ′ · pmin · cD/8)p and setting η = (δ ′ · pmin ·
cD/8)n proves the lemma for the case of last step being fixed.

The last step is variable The rest of the proof proceeds in a similar fashion as
previously, we reuse the same notions and the same notation. We only redefine the
differences: the neighbourhood and the way the paths are altered.

We call (s,ξ , t)∼ zp a target configuration if there is y∈R such that for all events
e ∈ C we have ξ (e)− ξp(e) = y and for all events e ∈ B we have ξ (e) = ξp(e).
We treat a target configuration as a g-dimensional vector where g = d + 1 if C is
non-empty, and g = d, otherwise. This vector describes the distinct values for the
sets F1, . . . ,Fd and the value y, if necessary. Again, a δ ′-neighbourhood of a target
configuration z is the set of configuration {z+C |C ∈ (−δ ′,δ ′)g}. We set Z to be
the (δ ′/4)-neighbourhood of zp and set κ(Y ) := κg(Y )/κg(Z) for any measurable
Y ⊆ Z. We fix Y to be a γ-neighbourhood of a fixed z ∈ Z.

65



5. CONDITIONS ON STABILITY

The path σ ′ is obtained from σ in the same way as before. We need to allow
imprecision in the waiting times of σ ′ so that we get a set of paths of measure
linear in γ g.

• For the case g = d + 1 it is straightforward as we make the last step also
with imprecision ±γ/2. We constraint

t̄i ∈


[Ti,Ti] if Ei are fixed-delay events,

(Ti− γ

2 , Ti +
γ

2) if i = r( j) for 1≤ j ≤ d or i = m,

(Ti− δ ′

4 , Ti +
δ ′

4 ) otherwise

where m equals p if Ep contains a variable-delay event and m is the step
where Ep were originally scheduled if Ep are fixed-delay events. The dif-
ference of the value of events in any Fi in the state z̄p from the state z is at
most γ because it is influenced by the imprecision of the step preceding its
original scheduling and also by the imprecision of the last step. Events in C
have the difference of the value at most γ/2 because of the last step. Hence,
z̄p ∈ Y . Again, we get that Pp(z0,Y ) ≥ κ(Y ) · (δ ′ · pmin · cD/8)p and setting
η = (δ ′ · pmin · cD/8)n proves the lemma for the case of the last step being
variable and for g = d +1.

• For the case g = d it is somewhat tricky since only at most d choices of
waiting times can have their precision dependent on γ . In each step we com-
pensate for the imprecision of the previous step. Only the imprecision of the
step preceding the first scheduling E1 is not compensated for. Otherwise, it
would influence the value of events E1 in z̄p. Let T a

i denote t ′i +∑
i−1
k=a(t

′
k− t̄k).

As illustrated in Figure 5.3, we constraint

t̄i ∈


[T 1

i ,T
1

i ] if Ei are fixed-delay events,

(T 1
i − δ ′

6 , T 1
i + δ ′

6 ) if i≤ r(1),

(T r(1)+1
i − γ

2 , T r(1)+1
i + γ

2) if i = r( j) for 2≤ j ≤ d or i = m,

(T r(1)+1
i − δ ′

6 , T r(1)+1
i + δ ′

6 ) otherwise.

The difference to σ ′ of any two absolute times is not changed by more than 3 ·
δ ′/6= δ ′/2 because the imprecision of any step is bounded by δ ′/6. Because
σ ′ is (δ ′/2)-wide, any path σ̄ goes through the same regions as σ ′. The
difference of the value of events E1 in the state z̄p from the state z is at most
γ/2 because it is only influenced by the imprecision of the last step. The
difference of any other event e is at most 2 · γ/2 because it is influenced by
the imprecision of the step preceding the original scheduling of e, as well.
Hence, z̄p ∈ Y .
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Now, we get that Pp(z0,Y ) ≥ κ(Y ) · (δ ′ · pmin · cD/12)p and setting η =

(δ ′ · pmin · cD/12)p proves the lemma for the remaining case of the last step
being variable and for g = d.

5.2 GSMP with Timed Automata Objectives

After dealing with GSMP with fixed delay events, we move on to another way to
incorporate strict real-time features into GSMP – the timed automata objectives. We
show that any DTA observer can be mimicked within the GSMP using fixed-delay
events. Furthermore, the resulting GSMP is single-ticking yielding the stability.

Theorem 5.2.1. Let M be a single-ticking GSMP, A be its DTA observer, and q
be a location of A . The random variables dA

q and cA
q are well-defined for almost

every run. Furthermore, a single-ticking GSMP M ×A can be constructed in time
polynomial in |M | and exponential in |A | such that dA

q and cA
q can be expressed

by the vectors dM×A and cM×A . Namely, for any BSCC B of the region graph of
M ×A with the vectors of frequencies d and c there are sets of states Sd and Sq of
M ×A such that

dA
q =

∑s∈Sd∩Sq ds

∑s∈Sd
ds

and cA
q = ∑

s∈Sq

cs with probability that M ×A reaches B.

Notice that the reduction holds even if we start with a GSMP already containing
fixed-delay events – if it is single-ticking. The rest of this section forms the proof of
Theorem 5.2.1. Let us fix a single-ticking GSMP M = (S,E ,E,Succ,α0), its DTA
observer A = (Q,Σ,X , −→,q0), and q ∈ Q.

The product GSMP needs to encode the behaviour of A . First, for each clock x
of A and for each 1 ≤ i ≤ Bmax, we enhance the set of events with a fixed-delay
event ex,i where ex,i occurs when the clock x reaches the integral value i. Second, we
enrich the state space with the regions of A ; we update this component using the
newly added fixed-delay events. In this construction, we do not need to care about
the “thin” regions with some clock having integral value. More precisely, we add
into the state space the set R of regions of A where no clock has integral value.
Furthermore, for a region r 6∈ R, we denote by r the first region from R reached
from r by flow of time. For a region r ∈ R, r denotes r itself. Third, as M ×A
makes artificial steps when updating the current region of A , we also store in the
state space whether the last step was a step of M so that we can express dA

q using
dM×A . Let us define the product precisely.

Definition 5.2.2. We set M ×A = (S×R×{y,n},E ∪E ′,E′,Succ′,α ′0) where

• E ′ = {ex,1, . . . ,ex,Bmax | x ∈X } where each ex,i has fixed delay 1;
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• E′((s,r,b)) = E(s)∪{ex,i | x ∈X , x satisfies i−1 < x < i in the region r};

• Succ′((s,r,b),E) is determined as follows. If E ∩E ′ 6= /0, let r′ denote the
region reached from r be elapsing the amount of time such that exactly the
clocks from E ∩E ′ reach the next integral value. Otherwise, let r′ = r. Then

– if E ∩E = /0, Succ′((s,r,b),E) assigns 1 to the state (s,r′,n),

– if E ∩E 6= /0, Succ′((s,r,b),E) assigns Succ(s,E ∩E )(s′) to each state
(s′,r′′,y) for s′ ∈ S where r′′ is the region that A reaches after reading
s′ in r′;

• α ′0(s,r0,1) = α0(s) for s ∈ S where r0 is the region containing (q0,0).

Lastly, Sd = {(s,r,b) | b = y} and Sq = {(s,r,b) | r has location q} for any q ∈ Q.

First, we show that M ×A is single-ticking, which yields together with Theo-
rem 5.1.2 the first part of Theorem 5.2.1.

Lemma 5.2.3. The GSMP M ×A is single-ticking.

Proof. Let r be a region of M ×A . We show that for each set E of ticking events
in r, the set E ∩E is non-empty and ticking in M . This suffices as if there were
two sets E1,E2 of ticking events, they would be by the maximality in the definition
disjoint and thus, the sets E1∩E and E2∩E would be disjoint and ticking in M ;
M would not be single-ticking. Let us fix a set E of ticking events in r. There is
a cycle r1, . . . ,rn in the region graph and sets of fixed-delay events E1, . . . ,En that
schedule each other.

We first show that for each Ei we have Ei ∩E 6= /0. There must be some j such
that E j∩E 6= /0. Namely, if all the sets contained only events of E ′ modelling clocks
of A , we would not obtain a cycle because the clocks of A can get restarted only
by events of E . Observe that each event of E j ∩E can be again scheduled only by
an occurrence of an event from E . As we have a cycle, all the sets Ei must thus
satisfy Ei∩E 6= /0.

Now we show that the set of events E ∩E is ticking in the region π(r) where the
function π maps each region of M ×A to its corresponding region of M . Indeed,
there is a cycle of regions k1, . . . ,km obtained from π(r1), . . . ,π(rn) by removing
repeating occurrences of each region and sets of events F1, . . . ,Fm obtained from
E1∩E , . . . ,Ek∩E by removing the corresponding sets. Each Fi is a maximal set of
events with the same fractional value in ki, otherwise the original set of events E j

is not maximal in r j. Similarly, each event scheduled to occur in π(r), occurs on
the cycle k1, . . . ,km, otherwise it does not occur on r1 . . . ,rn. From the definition of
M ×A , it is easy to see that the events F1 . . . ,Fm schedule each other in the sense
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of the definition of ticking. In fact, an occurrence of events stemming from A does
not have any influence on the M -part of the product.

The rest of Theorem 5.2.1 follows again from Theorem 5.1.2 and from observing
how M with A and M ×A correspond on individual runs:

Lemma 5.2.4. There is a function ρ mapping runs of M to runs of M ×A that
preserves the measure and for each run σ it satisfies,

dA
q (σ) =

∑s∈S1∩Sq dM×A
s (ρ(σ))

∑s∈S1 dM×A
s (ρ(σ))

, (5.2)

cA
q (σ) = ∑

s∈Sq

cM×A
s (ρ(σ)). (5.3)

Proof. Intuitively, ρ only adds the deterministic behaviour of A as encoded into
M ×A . Formally, let σ =(s0,ξ0, t0)(s1,ξ1, t1) · · · be a run of M which is observed
by A in the run (q,ν)s0(q0,ν0)t1(q′1,ν

′
1)s1(q1,ν1) · · · . The mapping ρ injects in

the run intermediate steps whenever A enters another region. Let us describe it
for a fixed i ∈ N0. We denote by ri,1, · · · ,ri,k(i) the regions from R traversed when
waiting for time ti+1 in (qi,νi). Further, for 1 ≤ ` ≤ k(i), let ti,` denote the time
spent in ri,`, (qi,`,νi,`) be the configuration of A when entering ri,`, and ξi,` be the
configuration of M ×A obtained from ξi and the fractional values from νi,`. We
set ρ(σ) = z0 σ0 z1 σ1 · · · where

• z0 = ((s0,r0,1,y),ξ0,1, t0) and zi = ((si,ri,1,y),ξi,1, ti−1,k(i−1)) for i > 0; and

• σi = ((si,ri,2,n),ξi,2, ti,1) · · ·((si,ri,k(i),n),ξi,k(i), ti,k(i)−1).

The preservation of measure is straightforward from the determinism both in
the definition of M ×A as well as the definition of ρ . As regards dA

q , observe
that only the states of the configurations z0,z1, . . . belong to Sd . Hence, to each
transition in σ , there is in ρ(σ) exactly one transition into a state from Sd . Further-
more, between two visits to y-states, the number of steps (to n-states) is bounded
by |X | ·Bmax; the frequency ∑s∈Sd

dM×A
s (ρ(σ)) is greater than 0. Therefore, the

ratio of visits to Sq out of the visits to Sd equals the ratio of visits to the location
q. As regards cA

q , notice that the transitions to n-states do not change whether the
current state belongs to Sq. Therefore, this may get changed only by the transitions
to y-states, corresponding to the transitions in A triggered by the transitions in M
(thanks to the definition of ρ). Therefore, the ratio of time spent in Sq equals the
ratio of time spent in to the location q.

In the following section, we translate the result to deterministic and stochastic
Petri nets.
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buffersBt Bc

transport

P
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modes

production
1 tp
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3
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Figure 5.4: DSPN without the time-average limit. Deterministic transitions are de-
noted by thick bars, exponential transitions are denoted by empty bars, and imme-
diate transitions are denoted by thin bars. The timed frequency of markings with a
token in M1 is not well-defined.

5.3 Deterministic and stochastic Petri nets

As outlined in Section 3.1.1 and formally proven in [Haa10], a formalism of stochas-
tic Petri nets is closely related to GSMP. In this section, we focus on the simplest
class of stochastic Petri nets that contain a feature similar to fixed-delay events,
namely the deterministic and stochastic Petri nets (DSPN). We use the notation and
terminology introduced in Section 3.1.1.

We provide structural conditions upon which a DSPN is stable. To motivate such
conditions we first give an example of an unstable DSPN. Notice that the unstable
GSMP from Figure 4.2 uses also the uniform distribution. We show that it is not
necessary for the instability.

Theorem 5.3.1. There is a bounded DSPN with two deterministic transitions such
that with positive probability its timed frequencies do not exist.

Proof. In Figure 5.4, we depict a DSPN similar to the GSMP from Figure 4.2. It
is a model of a simple producer-consumer system operated by one exponential and
three deterministic transitions using buffers Bt and Bc. In addition, on the right,
there is a controller with immediate transitions switching a token between modes
M1 and M2.

Let us explain the behaviour of the model. The transition tp produces a token ex-
actly every time unit and places it to the transport buffer Bt . As both the exponential
transition te and the deterministic transition td are enabled in parallel, the token is
transported into the consumption buffer Bc in at most 1 time unit. The consump-
tion of a token by the transition tc takes again exactly 1 time unit. The consumption
buffer Bc can hold at most two tokens. When a third token appears in the buffer, all
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three tokens are removed by switching the modes. The subsequent immediate tran-
sition returns two tokens back, re-enabling tc. Observe that the modes are switched
whenever the current transport takes less time than it has ever taken. The lower the
current minimal transport time is, the more time it takes to set a new minimum.
Hence, the stays in a single mode get longer and longer.

By similar arguments as in the proof of Theorem 4.2.1, the timed frequency of
markings with a token in M1 is not well-defined for a set of runs with positive
measure. Hence, the timed frequencies of the system do not exist.

Now we turn our attention to structural conditions that guarantee stability. Let us
fix a bounded DSPN N = (P,T,T ′, I,H,O,F,p,m0) with the finite set of markings
M. By M′ ⊆ M we denote the set of immediate markings, i.e. markings with an
enabled immediate transition. Furthermore, by Td ⊆ T \ T ′ we denote the set of
deterministic transitions.

Definition 5.3.2. We say that a transition t initiates a transition u if there is a
marking m0 ∈ M where by firing t (and a sequence of immediate transitions), a
sequence of markings m1, . . . ,mk is traversed with positive probability such that

• mi ∈M′ for 1≤ i < k and mk ∈M \M′,
• u is enabled in mk and either u = t or u is not enabled in mi for an 0≤ i < k.

For example, td initiates tc in Figure 5.4, as from the marking m0 = (Bt = 1,Bc =

2,M1 = 1) depicted in the figure we visit by firing td and immediately t2 and tb the
markings m1 = (Bc = 3,M1 = 1), m2 = (P= 1,M2 = 1), and m3 = (Bc = 2,M2 = 1)
such that tc is enabled in m3 but it was not enabled in m2.

Definition 5.3.3. We say that a DSPN is almost-monotone if there is a strict total
order ≺ on Td such that for any transition u ∈ Td that initiates a transition t ∈ Td

we have that either u is minimal w.r.t. ≺ or u≺ t.

Note that the DSPN of Figure 5.4 is not almost-monotone as both tp and tc initiate
themselves. Furthermore, observe that for a given DSPN, is can be easily algorith-
mically checked whether it is almost-monotone.

Theorem 5.3.4. For each DSPN N = (P,T,T ′, I,H,O,F,p,m0) that is almost-
monotone and bounded, the timed frequencies almost surely exist.

Proof. For the proof, we use the construction of a GSMP M = (S,E ,E,Succ,α0)

from [Haa10, Theorem 4.6] that is proven to simulate N in the sense of Defini-
tion 3.1.3. Then we show that M is single-ticking. Hence all its timed frequencies
are almost surely well-defined. Thanks to the definition of simulation, also N has
its timed frequencies almost-surely well-defined.
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Let us restate the construction of M .3 Let T = T \T ′ and M = M \M′ denote
the timed transitions and timed markings of N . We set

• S= {(m,u) |m∈M,u : T→{×,e, f},u(t)=× for each t not enabled in m};

• E =
⋃

t∈T{et , ft} contains two events for each timed transition of N ;

• E((m,u)) = {et | t ∈ T ,u(t) = e}∪{ ft | t ∈ T ,u(t) = f};

• Succ((m,u),E) assigns to (m′,u′) the probability

∑
m1,...,mk

p(m1−m,E) ·p(m2−m1,E(m1)∩T ′) · · · ·

·p(mk−mk−1,E(mk−1)∩T ′),

where E(m) denotes the set of transitions enabled in m and the sum is over
all sequences of immediate markings ending with the timed marking mk =m′

that are consistent with u and u′: for any transition t ∈ T such that u(t),u′(t)∈
{e, f} and u(t) 6= u′(t), t was not enabled is some immediate marking mi

of the sequence. For each transition t ′ ∈ T that is newly enabled in m′, i.e.
u(t) = × and u′(t) 6= ×, we additionally require that u′(t) = et , otherwise
such state obtains zero probability by Succ. Notice that u(t) denotes which
of the events {et , ft} currently represents t.

• α0((m,u)) = 1 if m = m0 and u(t) = et for each transition t ∈ T enabled in
m, and α0((m,u)) = 0, otherwise.

The GSMP closely follows the structure of N but it skips the immediate markings
where zero time is spent and takes transitions directly to the first timed marking.
Whenever a timed transition t is disabled and enabled again in the intermediate
sequence of immediate markings, it is “restarted” in N . The definition of GSMP
does not allow restarting an event, we simulate it by switching off one of the events
of t and scheduling the other.

Now we show that M is single-ticking. For a fixed region r in the region graph
of M we show that there is at most one set of ticking events. Let E and E ′ be
two disjoint set of ticking events. According to the definition, there are cycles
r1, . . . ,rn and r′1, . . . ,r

′
n′ in the region graph and corresponding sets of fixed-delay

events E1, . . . ,En and E ′1, . . . ,E
′
n′ . Observe that from the definition of ticking sets, it

is possible to pick from these sets (sub)cycles of fixed-delay events e1, . . . ,em and
e′1, . . . ,e

′
m′ such that when each ei and e′i occurs in the respective region, ei+1 and

3. Notice that our definition of SPN is simpler than in [Haa10] as it does not allow the distribution
of a transition to depend on the marking where it becomes enabled. For the sake of readability, we
therefore simplify the construction from [Haa10] of the simulating GSMP M .
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e′i+1 start to be scheduled, respectively. Let m1, . . . ,mm and m′1, . . . ,m
′
m′ be cycles

of markings corresponding to regions from whose sets we picked the events and
t1, . . . , tm and t ′1, . . . , t

′
m′ be the corresponding deterministic transitions. Observe that

each ti initiates ti+1 and each t ′i initiates t ′i+1. Hence, both the cycles must actually
contain only one element, i.e. m = 2, m′ = 2, and t1 = t2 = t ′1 = t ′2; otherwise it is
not possible to define a strict total order ≺ witnessing that N is almost-monotone.
Therefore, the event e corresponding to t1 belongs to both E and E ′ contradicting
that E and E ′ are disjoint.

Note that for the ease of exposition we did not define the region relation on the
configurations of DSPN. Hence, the sufficient condition for a DSPN to be stable
that we could provide is a bit weaker than the sufficient condition that we proved
for GSMP. However, it is still satisfied by an interesting class of DSPN that al-
lows multiple concurrently enabled deterministic transitions. In the next section,
we address the approximation of d and c.

5.4 Approximations of frequency measures on stable GSMP

In the previous sections we proved that (1) for any s ∈ S in single-ticking GSMP,
ds and cs are almost surely well-defined and for almost all runs they attain only
finitely many values ds,1 . . . ,ds,k and cs,1, . . . ,cs,k, respectively; that (2) the same
holds for the frequencies dA

q and cA
q for any observer TA A and any its location

q by a reduction to a single-ticking GSMP; and that (3) timed frequencies in each
almost-monotone DSPN can also be analysed by reduction to timed frequencies in
a single-ticking GSMP.4 In this section we show that it is possible to approximate
ds,i’s and cs,i’s and the probabilities that ds and cs attain these values, respectively.

Theorem 5.4.1. In a single-ticking GSMP, let ds,1, . . . ,ds,k and cs,1, . . . ,cs,k be the
discrete and timed frequencies of a state s∈ S, respectively, corresponding to BSCCs
of the region graph. For all 1≤ i≤ k, the numbers ds,i and cs,i as well as the prob-
abilities P(ds = ds,i) and P(cs = cs,i) can be approximated up to any ε > 0.

The rest of this section deals with the proof of Theorem 5.4.1. Let X1, . . . ,Xk

denote the sets of configurations in individual BSCCs and ds,i and cs,i correspond

4. In order to analyse the discrete frequencies, a more complicated simulating GSMP needs to be
used. We restricted to the timed frequencies as it corresponds to the steady-state analysis, the core of
the DSPN literature.
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to Xi. Since we reach a BSCC almost surely, we have

P(ds = ds,i) =
k

∑
j=1

P(ds = ds,i | Reach(X j)) ·P(Reach(X j))

=
k

∑
j=1

1[ds, j = ds,i] ·P(Reach(X j))

where the second equality follows from the fact that almost all runs in the j-th
BSCC yield the discrete frequency ds, j. Therefore, P(ds = ds,i) and ds,i can be
approximated as follows using the methods of [RR04].

Claim 5.4.2. Let X be a set of all configurations in a BSCC B, Xs ⊆ X the set
of configurations with state s, and ds the frequency corresponding to B. There are
computable constants n1,n2 ∈N and p1, p2 > 0 such that for every i∈N and zX ∈X
we have

|P(Reach(X))−Pi(z0,X)| ≤ (1− p1)
bi/n1c

|ds−Pi(zX ,Xs)| ≤ (1− p2)
bi/n2c

Proof. Let Y denote the union of regions from which the BSCC B is reachable. By
Lemmata 5.1.6 and 5.1.7 we have p,q > 0 and m ∈ N and k < |V | such that from
any z ∈ Y we reach X in m+ k steps with probability at least p ·q. We get the first
part by setting n1 = m+ k and p1 = p ·q. Indeed, if the process stays in Y after n1

steps, it has the same chance to reach X again, if the process reaches X , it never
leaves it, and if the process reaches Γ \ (X ∪Y ), it has no chance to reach X any
more.

By Lemma 5.1.10, Γ is (n,ε,κ)-small. By Theorem 8 of [RR04] we thus obtain
that for all x ∈ Γ and all i ∈ N,

sup
A∈F
|Pi(x,A)−π(A)| ≤ (1− ε)bi/nc

which yields the second part by setting A = {(s′,ξ , t) ∈ Γ | s′ = s} and observing
A ∈F and ds = π(A).

Further, we want to approximate cs,i = Eπ [τ]/Eπ [W ], where π is the invari-
ant measure on Xi. In other words, we need to approximate

∫
Xi

τ(x)π(dx) and∫
Xi

W (x)π(dx). An n-th approximation wn of Eπ [W ] can be gained by discretiz-
ing the part of the state space {(s′,ξ , t) ∈ Γ | ∀e ∈ E(s′) : ξ (e)≤ n} into 1/n-large
hypercubes, where the invariant measure π is approximated using Pn. This approx-
imation converges to Eπ [W ] since W is continuous and Eπ [W ] is finite:

Claim 5.4.3. On each region, W is continuous, and Eπ [W ] is finite.
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Proof. Let (s′,ξ , t) be a configuration, C and D the set of variable-delay and fixed-
delay events scheduled in s′, respectively. If D 6= /0, let T = mind∈D(`d−ξ (d)) be
the time the first fixed-delay event can occur; if D = /0, let T = ∞. The probability
that the transition from (s′,ξ , t) occurs within time t ′ is

F(t ′) =

{
1−∏c∈C

∫
∞

t ′ fc|ξ (c)(x) dx for 0 < t ′ < T,

1 for t ≥ T

as non-occurrences of variable-delay events are mutually independent. Observe that
F(t ′) is piece-wise differentiable on the interval (0,T ), we denote by f (t ′) its piece-
wise derivative. The expected waiting time in (s′,ξ , t) is

W ((s′,ξ , t)) =

{∫ T
0 x · f (x) dx+T · (1−F(T )) for T < ∞,∫
∞

0 x · f (x) dx for T = ∞.
(5.4)

Recall that for each variable-delay event e, the density fe is continuous and bounded.
Therefore, all fe|t ′ are also continuous, hence F and f are also continuous with re-
spect to ξ and with respect to t ′ on (0,T ). Thus W is continuous for T both finite
and infinite. Moreover, for finite T , W is bounded by T which is for any (s′,ξ , t)
smaller than maxd∈E f `d . Hence, Eπ [W ] is finite. For T = ∞, Eπ [W ] is finite due to
the assumption that each fe has finite expected value.

This concludes the proof of Theorem 5.4.1 as τ only differs from W in being
zero for s′ 6= s; thus, Eπ [τ] can be approximated analogously.
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Chapter 6

Qualitative Games over GSMP with Timed Automata Ob-
jectives

After dealing with stability in the long-run behaviour of GSMP, we study the sta-
bility in the game setting. First, we define a two-player game extension of GSMP,
called generalized semi-Markov games. In this game extension, we analyse the
hard real-time bounds in the form of a DTA observer (and do not allow fixed-delay
events).

The core of the chapter is the analysis of the games with the fundamental reach-
ability specification in the observer. We restrict to the qualitative case where one of
the players has a strategy to reach the target almost surely. In such a situation, the
observed stability implies that the player can also reach the target almost surely us-
ing a strategy with a simple finite structure. This is rather surprising given the game
has intrinsically uncountable space of configurations. Another interesting insight is
that the strategy can be represented using a deterministic timed automaton. We also
provide an algorithm to decide whether an almost-sure winning strategy exists and
to construct its representing DTA if it exists.

Lastly, we extend the results to the long-run behaviour. Namely, we show that
the results for reachability can be employed to the Büchi specification in the ob-
server. Again, if there is a strategy to visit the target infinitely often, there is also
such a strategy with a finite representation using a DTA. This chapter is based
on [BKK+10b].

6.1 Generalized semi-Markov games

Let us start with the definition of the game formalism.

Definition 6.1.1 (GSMG). A generalized semi-Markov game (GSMG) is a tuple
G = (S�,S♦,M,E ,E,Succ,Act,E,α0) where

• S� and S♦ are finite sets of control states of player� and ♦ where S denotes
S�∪S♦, M is a finite set of modes, and α0 ∈ D(S) is an initial distribution;
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• Act⊆D(M) is a finite set of actions and E : S→ 2Act assigns to each control
state s a non-empty set of actions enabled in s;

• E is a finite set of events where to every e ∈ E we associate its lower bound
`e ∈ N0, upper bound ue ∈ N∪{∞}, and a density function fe : R≥0→ R≥0

which is positive on (`e,ue) and satisfies
∫ ue
`e

fe(x)dx = 1;

• E : M→ 2E assigns to each mode m a non-empty set of events scheduled to
occur in m, and Succ : M×E → S assigns a successor state s to each mode
m and each event e ∈ E(m) occurring in m.

As a technical assumption, we further require that there is r ∈ R>0 bounding
all conditional expected waiting. Formally, for any event e with ue = ∞ we have
supb>`e

E[e | b] ≤ r where E[e | b] denotes
∫

∞

0 x · fe|b(x)dx. Recall that fe|b here
denotes the shifted density function as defined at the beginning of Chapter 2 and
already applied in Section 2.1.3.

First, we explain the behaviour of GSMG on an intuitive level. For each event e
we keep track how much time ξ (e) has already elapsed since it become scheduled.
The game starts in some control state s0 randomly chosen according to α0 and we
have ξ0(e) = 0 for each e∈ E . One step of the game is as follows. Let si be a control
state and ξi be a vector of elapsed time. First, the player controlling si chooses
a distribution a ∈ D(E(si)) and a mode mi is randomly chosen with probability
∑a∈E(si) a(a) · a(mi). Upon entering mi, some events stop being scheduled or start
being scheduled. We denote the vector altered this way by ξi[mi] and set ξi[mi](e) =
0 either if e is old, i.e. e 6∈E(mi), or if e is new, i.e. i = 0 or e∈E(mi)\E(mi−1). We
set ξi[mi](e) = ξi(e) if e is inherited, i.e. i > 0 and e ∈ E(mi−1)∩E(mi). Second,
for each event e ∈ E(mi) a random delay te is generated according to the density
fe|b for b = ξi[mi](e). Let ei be the event with the minimal delay ti.1 After spending
ti time units in mi, the control state si+1 = Succ(mi,ei) is entered with the vector
of elapsed time ξi+1 = (ξi[mi]⊕mi ti)[ei := 0]. Let us define the notation. The value
(ξ ⊕m t) (e) equals ξ (e) + t if e ∈ E(m), and ξ (e), otherwise. Furthermore, the
value ξ [e := 0](e′) equals 0 if e = e′, and ξ (e′), otherwise. These steps of the game
repeat forever forming an infinite play.

Formally, we define the semantics of a GSMG as a discrete-time stochastic game
over uncountable set of configurations Γ = S×RE

≥0×R≥0 where the second com-
ponent is the vector of elapsed time and the third component is the time spent in
the previous configuration. The set of configurations Γ is endowed with a product
σ -field F of a discrete σ -field over S and Borel σ -fields for each real component.
The game starts in a configuration (s0,ξ0,0) with probability α0(s0). For each con-
figuration (s,ξ , t), action a ∈ E(s), and a measurable set of configurations Y , the

1. Several events have the same minimal delay with probability 0. This case can be thus ignored.
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probability that the next configuration belongs to Y is expressed by the transition
law PG defined as follows:

PG ((s,ξ , t),a;Y ) = ∑
m∈M,

e∈E(m)

a(m)
∫

∞

0
Win(m,e,ξ ; t ′)

·
[
(Succ(m,e),(ξ [m]⊕m t ′)[e := 0], t ′) ∈ Y

]
dt′

where [c] denotes the indicator function of the condition c and Win(m,e,ξ ; t ′) is the
density of event e occurring as the first event t ′ time units after m is entered with
vector ξ . Formally,

Win(m,e,ξ ; t ′) = fe|ξ [m](e)(t) · ∏
e′∈E(m),e′ 6=e

∫
∞

t
fe′|ξ [m](e′)(x)dx.

A history of G is a finite sequence h = (s0,ξ0, t0) · · ·(sn,ξn, tn) of configurations.
The history does not store the actions taken, modes visited, and events triggered.
As the sets Act, M, and E are finite, we assume without loss of generality that this
information is encoded in the next control state.

A strategy of player �, where � ∈ {�,♦}, is a measurable2 function which to
every history (s0,ξ0, t0) · · ·(sn,ξn, tn) with sn ∈ S� assigns a probability distribu-
tion over the set A(sn) of actions that are enabled in sn. The sets of all strategies of
player� and player ♦ are denoted by ΣG and ΠG , respectively. A play is an infinite
sequence of configurations ω = (s0,ξ0, t0) · · · . The set of all plays, denoted by Play,
is endowed with a product σ -field P (obtained by the standard cylinder construc-
tion). A pair of strategies σ ∈ ΣG and π ∈ ΠG together with the transition law PG

and the initial distribution uniquely determine a probability measure Pσ ,π
G over the

measurable space (Play,P). For a more formal treatment, see for example [MP70].
In this chapter, we use DTA for two different purposes. Firstly, we use DTA

to encode strategies in GSMG. Secondly, DTA are used as a generic specification
language for properties of timed systems in the sense of Section 2.2.3. Using such
specifications, we then define winning conditions for players � and ♦.

DTA strategies Using DTA we can express a class of strategies with finite rep-
resentation. The DTA “observes” the history, and the decisions taken by the corre-
sponding strategy depend only on the region of the resulting configuration (q,ν),
which makes the encoding finite. Every history h = (s0,ξ0, t0) · · ·(sn,ξn, tn) of G
defines a a (finite) timed word W (h) = s0 t0 · · · sn tn. We define DTA strategies as
follows.

2. It is measurable with respect to the σ -field over the set of all histories obtained as a disjoint union⋃
i∈N0

Hi where each Hi is a σ -field over histories of length i obtained as an i-fold product of F .
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sbsa
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Figure 6.1: Player � can make the frequency not well-defined. In the game on the
left, the density fe is uniform on (0,1), and the initial distribution α0 assigns 1 to sa.
In the DTA observer on the right, we measure the discrete or timed frequency of
the location qa.

Definition 6.1.2. A DTA strategy is a strategy τ such that τ(h) is rational for every
history h and there is a DTA A with alphabet S satisfying the following: Let h and
h′ be histories. We have τ(h) = τ(h′) if (q,ν) ∼ (q′,ν ′) where (q,ν) and (q′,ν ′)
are the configurations entered by A after reading W (h) and W (h′), respectively.

Winning conditions For a given specification X , we say that � wins if the play
belongs to X and♦wins if the play does not belong to X . As our main concern in the
thesis is the stochastic stability, we focus on basic specifications where the stability
manifests on the class of strategies sufficient for winning. Namely the reachability
and Büchi specification over a set of target locations T ⊆ Q of a DTA observer A .

Remark 6.1.3. Let us briefly comment the relation of these games to the perfor-
mance measures studied in previous chapters. A winning condition could be directly
based on the performance measures as defined for GSMP. For a given location q, we
could say that� wins if dq (or cq) satisfies ./ v with probability .̄/ p for v, p∈ [0,1]
and ./, .̄/ ∈ {<,≤,≥,>}. Notice that such a winning condition does not make
sense in the game setting. In Figure 6.1, there is a game and a DTA observer such
that the discrete and timed frequency of location qa depends solely on the strategy
of player �. By taking appropriate choices, player � can make with probability
one the frequencies not well-defined. Observe that this phenomenon is not related
to continuous-time stochasticity. Standardly, in the games literature, this issue is
solved by replacing limn→∞ with liminfn→∞ in the definition of the frequency (i.e.,
in Definition 2.2.9). Such games are then called mean-payoff games. Due to its
complexity in this setting of continuous-time games, such a winning objective is
beyond the scope of the thesis and we suggest it for future work.

Determinacy As observed in [MS98], the determinacy result for Blackwell games
[Mar98] implies determinacy of a large class of stochastic games. This abstract
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s0 m0 s1

wait
m1

s2

move
m2

e

e

e

q0

s0,x := 0

s1

s2,x≤ 1

Figure 6.2: Player � does not have an optimal strategy. In the game on the left, the
density fe is uniform on (0,1), and the initial distribution α0 assigns 1 to s0. In the
observer on the right, all of the “missing” edges (needed to satisfy the requirement
that the guards are total) lead to a “garbage” location which is not depicted.

class includes the games studied in this chapter, and thus we obtain:

Proposition 6.1.4. Any GSMG G observed by a DTA A with a reachability speci-
fication and Büchi specification over T is determined, i.e.

sup
σ∈ΣG

inf
π∈ΠG

Pσ ,π
G (ReachA (T )) = inf

π∈ΠG

sup
σ∈ΣG

Pσ ,π
G (ReachA (T )),

sup
σ∈ΣG

inf
π∈ΠG

Pσ ,π
G (BüchiA (T )) = inf

π∈ΠG

sup
σ∈ΣG

Pσ ,π
G (BüchiA (T )).

The above equalities define the value of G with respect to the reachability and Büchi
specifications, denoted by val(ReachA (T )) or val(BüchiA (T )), respectively.

In this chapter we restrict to the qualitative case and assume that the value is 1.

6.2 Reachability specifications

Let us fix a game G = (S�,S♦,M,E ,E,Succ,Act,A,α0), its DTA observer A =

(Q,S,X ,−→,qinit), and a reachability specification over T ⊆Q such that the value
val(ReachA (T )) = 1. The determinacy implies that for any ε > 0, player � has a
strategy that guarantees winning with probability 1− ε . However, we show that
player � does not necessarily have any almost-sure winning strategy that would
guarantee winning with probability 1. Formally, σ∗ ∈ ΣG is almost-sure winning if
Pσ∗,π

G (ReachA (T )) = 1 for any π ∈ΠG .

Proposition 6.2.1. There is a reachability game G with S♦ = /0, a DTA observer
A , and a set of target locations T such that the value of the game is 1 but there is
no almost-sure winning strategy of player �.

Proof. A simple example is given in Figure 6.2. In that game, val = 1 because for
every ε > 0, player � can wait in m0 until e is fired after a delay smaller than ε
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(this eventually happens with probability 1), and then move to m2. The probability
that e is assigned a delay at most 1− ε in m1 is 1− ε , and hence the DTA accepts
a play with probability 1− ε . However, player � has no optimal strategy. Indeed,
whenever move is taken, � looses with non-zero probability.

Therefore we consider the existence and effective constructability of almost-sure
winning strategies for player �. We show that:

Theorem 6.2.2. If there is (some) strategy of player � that is almost-sure winning
with respect to ReachA (T ), then there is also a DTA almost-sure winning strategy.
Furthermore, there exists an algorithm that in exponential time (1) decides whether
there is a DTA almost-sure winning strategy and (2) computes it if it exists.

A proof of Theorem 6.2.2 is not immediate and requires several steps. First, in Sec-
tion 6.2.1 we construct a product game G ×A of G and A and show that G ×A
can be examined instead of G and A . Intuitively, the product game G ×A is con-
structed by simulating the execution of A on-the-fly in G . Second, we analyse the
strategies in G ×A . Observe that an almost-sure winning strategy cannot reach
with positive probability a “bad” region from that it has zero probability of com-
ing to the target. In other words, from any history in a region that is reached with
positive probability it must have non-zero probability of winning. We call every
strategy that satisfies this condition a candidate strategy. In Section 6.2.2, we show
that there is a DTA candidate strategy. However, non-zero probability of winning
is not sufficient. In Section 6.2.3, we show that any such strategy is in fact almost-
sure winning. Third, in Section 6.2.4 we present the promised algorithm which
computes a DTA almost-sure winning strategy if it exists.

6.2.1 The product game

The set of configurations of G ×A is obtained as a product of configurations of G
and A , i.e. S× (R≥0)

E ×R≥0×Q× (R≥0)
X . The game starts in a configuration

(s,0,0,q,0) with probability α0(s) where q satisfies (qinit ,0) s−→(q,0). For each
configuration (s,ξ , t,q,ν), action a ∈ E(s), and a measurable set of configurations
Y , the transition law is defined as follows.

PG×A ((s,ξ ,t,q,ν),a;Y ) = ∑
m∈M,

e∈E(m)

a(m)
∫

∞

0
Win(m,e,ξ ; t ′)

·
[(

s′, (ξ [m]⊕m t ′)[e := 0], t ′, q′, ν
′) ∈ Y

]
dt′

where s′ = Succ(m,e) and (q,ν) t ′s′−→(q′,ν ′). Intuitively, in each step: (1) the player
on turn chooses some action a, (2) a mode m is randomly chosen according to a,
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(3) a random time t ′ is spent waiting in mode m for some event e (4) causing A
to read the time stamp t ′, and (5) after that a new control state s′ = Succ(m,e) is
reached (6) causing A to read the letter s′.

As G ×A is again a stochastic game over the uncountable space of configura-
tions, histories (finite sequences of configurations), plays (infinite sequence of con-
figurations), sets of strategies ΣG×A and ΠG×A and the induced probability mea-
sure Pσ ,π

G×A are defined analogously to G . Furthermore, for a history h = z0 · · ·zn

we denote by Pσ ,π
G×A [h] the probability measure of the game that starts in the con-

figuration zn where the strategies behave as if h has been played so far. Formally, for
a measurable set A, Pσ ,π

G×A [h](A) :=P
σ [h],π[h]
(G×A )[zn]

(A) where (G ×A )[zn] is the game
G ×A that starts in configuration zn with probability 1, σ [h](h′) = σ(z0 · · ·zn−1 h

′)

for any history h′, and analogously for π[h].
The goal of the player � is to reach a configuration (s,ξ , t,q,ν) such that q ∈

T and the goal of the player ♦ is to avoid it. The set of plays reaching such a
configuration is denoted by Reach(T ). A strategy σ ∈ΣG×A is almost-sure winning
if Pσ ,π

G×A (Reach(T )) = 1 for any π ∈ΠG×A . In the rest of this subsection, we first
relate almost-sure winning strategies in the original game and in the product game.
Then, we define a notion of region-based strategies in G ×A that correspond to
DTA strategies in G and that are studied in the rest of the chapter.

Equivalence of G and G ×A We show that almost-sure winning strategies in
G and G ×A coincide. To this end we need to map the strategies from G to
G ×A and back. Each strategy τ in G induces a strategy τ↑ in G ×A that sim-
ply ignores the additional two components of the state space. I.e., for any history
h = (s0,ξ0, t0,q0,ν0) · · ·(sn,ξn, tn,qn,νn) in G ×A we set τ↑(h) := τ(h′) where
h′ = (s0,ξ0, t0) · · ·(sn,ξn, tn). Similarly, each strategy τ in G ×A induces a strat-
egy τ↓ in G that for each history takes the decision that τ takes for the history
enhanced with the deterministic behaviour of the DTA. Formally, for any history
h = (s0,ξ0, t0) · · ·(sn,ξn, tn) in G we set τ↓(h) := τ(ρ(h)) where ρ(h) is a history
(s0,ξ0, t0,q0,ν0) · · ·(sn,ξn, tn,qn,νn) such that (qinit ,0) s0−→(q0,ν0) and furthermore
(qi−1,νi−1)

tisi−→(qi,νi) for each 0 < i≤ n.

Proposition 6.2.3. The almost-sure winning strategies in G and G ×A coincide:

• If σ ∈ ΣG is almost-sure winning, then σ↑ is almost-sure winning in G ×A .

• If σ ∈ ΣG×A is almost-sure winning then σ↓ is almost-sure winning in G .

Proof. For the first point, it suffices to show that for any σ ∈ ΣG and π ∈ΠG×A ,

Pσ ,π↓

G (ReachA (T )) = Pσ↑,π
G×A (Reach(T )).
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Indeed, σ↑ is almost-sure winning if Pσ↑,π
G×A (Reach(T )) = 1 for any π ∈ΠG×A .

We extend the mapping ρ to plays. For a play ω = (s0,ξ0, t0) · · · of G we set
ρ(ω) = (s0,ξ0, t0,q0,ν0) · · · where (qinit ,0) s0−→(q0,ν0) and (qi−1,νi−1)

tisi−→(qi,νi)

for each i > 0. We obtain the equality by observing

• Reach(T ) = ρ(ReachA (T )), which directly follows from the definitions;

• the mapping ρ preserves measure. This follows from the facts that

1. σ(h) = σ↑(ρ(h)) and π↓(h) = π(ρ(h)) for any history h;

2. PG ((s,ξ , t),a;Y ) = PG×A ((s,ξ , t,q,ν),a;Yq,ν) for any configuration
(s,ξ , t,q,ν) of G ×A , action a, and measurable set of configurations Y
of G where Yq,ν = {(s′,ξ ′, t ′,q′,ν ′) | (s′,ξ ′, t ′) ∈ Y,(q,ν) t ′s′−→(q′,ν ′)}.

For the second point, the proof goes analogously by showing that for any strategy
σ ∈ ΣG×A , and π ∈ΠG , we have Pσ↓,π

G (ReachA (T )) = Pσ ,π↑

G×A (Reach(T )).

Thanks to Proposition 6.2.3, we can focus on almost-sure winning strategies in
G ×A . The region relation helps us to find a counterpart to DTA strategies in
G ×A .

Region relation Analogously to the definition of the region relation∼ on the con-
figurations of a GSMP and on the configurations of a TA, we define ∼ on the con-
figurations of G ×A . We put (s,ξ , t,q,ν)∼ (s′,ξ ′, t ′,q′,ν ′) if (s,ξ , t)∼ (s′,ξ ′, t ′)
and (q,ν) ∼ (q′,ν ′). Again, the equivalence classes of ∼ are called regions. Ob-
serve that all configurations of a region r have the same control state, denoted
sr, and the same location, denoted qr. We say that an action a is enabled in r if
a ∈ E(sr). Furthermore, r is a target region if qr ∈ T . The sets of all regions and
target regions are denoted by R and RT , respectively. For X ⊆ R, we denote by
ReachReg(X) the set of plays that reach any configuration in any region in X .

Counterpart to DTA strategies in G ×A A strategy σ ∈ ΣG×A is region-based
if σ(h) is rational for any h and σ(hz) = σ(h′z′) for any histories such that z∼ z′.

Proposition 6.2.4. If σ ∈ ΣG×A is a region-based strategy, σ↓ is a DTA strategy.

Proof. We show that there is a DTA AG×A such that

1. its regions are in one-to-one correspondence with the regions of G ×A ;

2. it mimics the behaviour of G ×A when reading the timed word of the play.
Precisely, let h and h′ be histories ending in the same region of G ×A . After
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reading Ap(h) and Ap(h′), the automaton AG×A is defined in such a way
that it ends up in configurations (q,ν) and (q′,ν ′), respectively, that are in
the same region of AG×A .

These two points guarantee that σ↓ is a DTA strategy. Let us define AG×A . In-
tuitively, it has a special clock for every clock of A and every event of E , and
uses its locations to store also the current control state of the game. Formally,
AG×A = ((S×Q)∪ {qinit},S,X ∪ E , ↪→init ∪ ↪→play,qinit , /0). For a control state
s we denote by ms and es the unique mode and event such that Succ(ms,es) = s
(recall that we encode the mode and the event in the successor control state). The
set of events not scheduled in m is denoted as N(m). We set:

↪→init = {(qinit ,s,g,X ,(s,q′)) | s ∈ S,(q0,s,g,X ,q′) ∈ −→}
↪→play = {((s,q),s′,g,{es′}∪N(ms′)∪X ,(s′,q′))

| s,s′ ∈ S,q ∈ Q,(q,s′,g,X ,q′) ∈ −→}

Note that when entering location (s,q), clocks N(ms) corresponding to not enabled
events are always restarted, i.e. the regions are in one-to-one correspondence to the
regions of G ×A . The second point is easy to show by induction on the length of
the history h.

In the subsequent proofs we search for a region-based almost-sure winning strategy
σ in G ×A since σ↓ is the desired DTA almost-sure winning strategy in G . For
the rest of Section 6.2, we deal only with G ×A . We thus write Σ, Π, Pσ ,π , and
Pσ ,π [h] instead of ΣG×A , ΠG×A , Pσ ,π

G×A , and Pσ ,π
G×A [h], respectively.

6.2.2 The existence of region-based candidate strategies in G ×A

The next step is to show that there is a region-based candidate strategy. Later in
Section 6.2.3 we show that such a strategy is in fact almost sure winning.

Definition 6.2.5. We call σ a candidate strategy if infπ∈Π Pσ ,π [h](Reach(T ))> 0
for each history h ending in a configuration from S (σ) where

S (σ) = {z | ∃π ∈Π,r ∈R : Pσ ,π(ReachReg({r}))> 0,z ∈ r}.

Proposition 6.2.6. If there is an almost-sure winning strategy σ ∈ Σ, then there is
a region-based candidate strategy σ∗ ∈ Σ.

The rest of the subsection forms the proof of Proposition 6.2.6. We fix an almost-
sure winning strategy σ and we build the strategy σ∗ in iterations. At the beginning,
we set X =RT and set σ∗ to be an arbitrary region-based strategy. In each iteration,
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we take a non-empty set of regions Y such that X ∩Y = /0 and
⋃

Y ⊆ S (σ) and
change the decision of σ∗ in Y so that

inf
π∈Π

Pσ∗,π [h](ReachReg(X))> 0 for any h ending in any region r ∈ Y . (6.1)

Then we set X := X ∪Y . At the end of each iteration, we have by a simple inte-
gration that infπ∈Π Pσ∗,π [h](ReachReg(RT )) > 0 for any history h ending in any
region from X . We repeat the process until

⋃
X = S (σ). At last we show that

S (σ∗)⊆S (σ) which concludes the proof that σ∗ is a candidate strategy.
Let us now focus on a single iteration. Let X be a set of regions with RT ⊆ X .

We fix an arbitrary region r̄ ⊆S (σ) such that r̄ 6∈ X . Intuitively, the set Y contains
the regions necessary to reach X from r̄ and will be formally defined later in the
proof. Let h̄ be any history ending in r̄, for which σ is almost-sure winning. Such
a history exists since there is π ∈ Π such that r̄ is visited with positive probability
and since σ is almost-sure winning. Hence, infπ∈Π Pσ ,π [h̄](ReachReg(X)) = 1
because RT ⊆ X . For any i, we denote by RX

i the set of plays that reach X in the
first i steps. The first non-trivial observation is that player ♦ cannot block reaching
X arbitrarily long.

Claim 6.2.7. For any h̄ and set of regions X with infπ∈Π Pσ ,π [h̄](ReachReg(X))>

0, there is n ∈ N such that infπ∈Π Pσ ,π [h̄](RX
n )> 0.

Proof. To prepare an important argument for the actual proof, we first show for
any i ∈ N that if infπ∈Π Pσ ,π [h̄](RX

i ) = 0 then there is a strategy π such that
Pσ ,π [h̄](RX

i ) = 0. Let us fix i ∈ N. We show by induction on 0 ≤ j ≤ i that for
any h extending h̄ by (i− j) more steps we have

inf
π∈Π

Pσ ,π [h](RX
j ) = 0 −→ ∃π : Pσ ,π [h](RX

j ) = 0. (6.2)

First, let j = 0. If a history satisfies the left hand side of (6.2), it ends in a region
not in X , and it also satisfies the right hand side for any π ∈ Π. Further, let all
histories for j satisfy (6.2) and let h be a history that extends h̄ by i− ( j+1) steps
and infπ∈Π Pσ ,π [h](RX

j ) = 0. Let z be the last configuration of h. First, let z belong
to � and a be any action such that σ assigns positive probability to a in h. There
must be a set of configurations A with PG×A (z,a;A) = 1 such that all histories of
the form hz′ for z′ ∈ A satisfy the left hand side of (6.2). Indeed if there was a set B
with PG×A (z,a;B)> 0 such that infπ∈Π Pσ ,π [hz′](RX

j )> 0 for every z′ ∈ B, the left
hand side of (6.2) cannot hold for h. By the induction hypothesis, we have optimal
strategies for almost all successors of h, we easily combine them together and get
an optimal strategy for h. Second, let z belong to ♦. There must be similarly an
action a such that there is a set of configurations A with PG×A (z,a;A) = 1 and all
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histories of the form hz′ for z′ ∈ A satisfy the left hand side of (6.2). Likewise, we
have by the induction hypothesis optimal strategies for almost all successors of h,
we easily combine them together in a strategy that chooses a in h and get an optimal
strategy for h.

Now we turn our attention to the claim itself. Let us assume the opposite that
for all i ∈ N we have infπ∈Π Pσ ,π [h̄](RX

i ) = 0. Thanks to the proof above, for
each i ∈ N we denote by πi a strategy such that Pσ ,πi [h̄](RX

i ) = 0. Using these
strategies, we build a strategy π with Pσ ,π [h̄](ReachReg(X)) = 0 contradicting
the assumption of the claim. We define π step by step and keep for each i ∈ N0 the
inductive property that there is a set Hi of histories of the form h̄h with |h|= i such
that

1. Pσ ,π [h̄](Wi \ReachReg(X)) = 1 where each play from Wi starts with the last
i+1 configurations of some h ∈ Hi;

2. for each h ∈ Hi we have that Pσ ,π j [h](RX
j−i) = 0 for infinitely many j > i.

We denote the infinite set of strategies for h ∈ Hi in the second point by Πh. Note
that the probability in the first condition depends only on first i steps for that π

will be defined. The second condition intuitively means that histories in Hi are
“promising” for infinitely many strategies π j w.r.t. their goal Pσ ,π j [h̄](RX

j ) = 0.
As regards the base, let H0 = {h̄} and Πh̄ = {π j | j ∈ N}. The set H0 satisfies

clearly both conditions. Let us have a set Hi, we define π for all histories from Hi

and construct Hi+1. Let us fix any h ∈ Hi with z being its last configuration.

• First let z belong to ♦. Because the set of actions is finite, there must be
an action a that is assigned positive probability by infinitely many strategies
Π′ ⊆Πh. We define π to take action a in h with probability 1. There must be
a set of configurations A such that P(A | z,a) = 1 and for any z′ ∈ A and π j ∈
Π′ it holds Pσ ,π j [hz′](RX

j−(i+1)) = 0. Otherwise we get a contradiction with
π j ∈Hh because π j would reach via a with positive probability configurations
where it cannot win.

• Second let z belong to �. By similar arguments as before, there must be
a set of configuration A such that P(A | z,a) = 1 for any action a chosen
by σ in h with positive probability; and for any z′ ∈ A and π j ∈ Π′ it holds
Pσ ,π j [hz′](RX

j−(i+1)) = 0.

We set Hh
i+1 = {hz′ | z′ ∈ A} and Πhz′ = Π′ for any z′ ∈ A. Finally, we set Hi+1 =⋃

h∈Hi
Hh

i+1. From the observations above, this set satisfies both conditions 1. and 2.
When we repeat the inductive steps ad infinitum, we get the contradiction that the
probability to reach X using the strategy π is 0.
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Next, we set which actions need to be taken in which regions to reach X from h̄

in n steps. For each alternating sequence of regions and actions α = r0a0 · · ·ai−1ri

with i ≤ n, let Rα denote the set of plays Pattern(r0a0 · · ·ai−1ri)∩RX
n where the

plays Pattern(r0a0 · · ·ai−1ri) visit the respective regions in the first i step where the
respective actions are taken. We say that a set A of such sequences is a guarantee of
X from h̄ if (1) every sequence contains a region from X , (2) A is followed from h̄

no matter how ♦ plays, i.e. p(A)> 0 where p(A) = infπ∈Π Pσ ,π [h̄](
⋃

α∈A Rα), and
(3) A can be implemented by �, i.e. for any j < i, all sequences in A that agree on
the first j regions either agree on the j-th action or the j-th region belongs to ♦.

Claim 6.2.8. For any h̄, set of regions X, and n ∈N with infπ∈Π Pσ ,π [h̄](RX
n )> 0,

there is a guarantee of X from h̄.

Proof. We build the guarantee of X from h inductively. For i ∈N, we say that a set
of sequences A is an i-step guarantee if (1) every sequence in A has i regions, and
A satisfies conditions (2) - (3) of a guarantee, and (4) A is minimal such set, i.e.
p(A\{α}) = 0 for any α ∈ A, By definition, {r} is an 1-step guarantee. We show
that for any i-step guarantee A, there is an (i+ 1)-step guarantee A′. Observe that
this is sufficient as by this process we obtain an n-step guarantee and any n-step
guarantee of X is thanks to (1), (2), and (4) also a guarantee.

Let A= {α1, · · · ,α`} be the i-step guarantee. One by one replacing the sequences
of A, we build sets (Ak)k≤` such that the set A` is the sought A′. We set A0 = A; let
1≤ k ≤ ` and let αk = r0a0 · · ·ai−1ri.

• First, let us assume that ri belongs to player �. As there are only finitely
many actions and finitely many regions, there must be some action ai and
some region ri+1 such that p((Ak−1 \ {αk})∪α ′k) > 0 where α ′k = αk airi+1.
For such α ′k we set Ak = (Ak−1 \{αk})∪α ′k satisfying condition (2). Due to
(4) of A, there are no other sequence in A with the same regions as in αk,
hence (3) holds for Ak as well. As regards condition (4), observe that we still
have p(Ak \{α}) = 0 for any α ∈ Ak: if we remove α ′k, it holds as before, if
we remove α 6= α ′k, it holds similarly as Rα ′k

⊆ Rαk .

• Second, let us assume that ri belongs to player♦. We replace αk with a set of
sequences - one for each action of ♦ enabled in ri. For each action a enabled
in ri, we denote by αk,a a sequence αk ara where ra is some region such that
Rαk,a has positive measure for any π which chooses a in a subset of Rαk of
positive measure. We set Ak = (Ak−1 \αk)∪{αk,a | a enabled in ri}. Hence,
the condition (3) holds for Ak. Observe that also (2) holds, i.e. p(Ak) > 0.
Indeed, for any strategy π that does not reach the target via αk, the situation
is the same as for Ak−1. Any strategy that reaches the target with positive
probability via αk must also reach it with positive probability via some αk,a.
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Furthermore, we show that (4) holds, i.e. p(Ak \ {α}) = 0 for any α ∈ Ak.
If any α ∈ Ak−1 gets removed, we obtain the result as for Ak−1 as all the
sequences in Ak extend the sequences in Ak−1. If any αk,a gets removed, there
is a sequence of strategies that in the limit do not reach the target via any
Ak−1 \{αk}. They may only reach the target via αk. We alter these strategies
so that they choose action a after traversing αk, thus not reaching the target
via Ak \{αk,a}.

Observe that A′= A` is an (i+1)-step guarantee as it satisfies (1) as well. We repeat
this process until we get an n-step guarantee A, hence a guarantee.

With a guarantee A, we finally set Y = {r | ∃ i < n,r0a0 · · ·an−1rn ∈ A : r = ri}
to be the set of regions in A. The guarantee A defines on Y a simple strategy that
reaches X from h̄ in n steps with positive probability. However, this strategy (a) does
not have to be region-based since it may choose different actions in one region when
it is reached via different sequences of regions and (b) does not guarantee reaching
X with positive probability from other histories in Y .

To address (a), the guarantee A defines the region-based σ∗ on Y as follows. For
a region r ∈ Y of player � and a history h ending in r, we set σ∗(h)(a) = 1 for an
action a that appears after a latest occurrence of r in A, i.e. a = ai and r = ri for
some r0a0 · · ·an−1rn ∈ A and i = max{ j < n | r′0a′0 · · ·a′n−1r′n ∈ A,r′j = r}.

To address (b), we prove (6.1), i.e. infπ∈Π Pσ∗,π [h](ReachReg(X)) > 0, by in-
duction on the distance of h to X . For a region r ∈ Y with control state s we define
the distance by

dist(r) =


0 if r ∈ X ,

1+minr a
 r′ dist(r′) if r belongs to � and σ∗ chooses a in r,

1+maxa∈E(s) minr a
 r′ dist(r′) if r belongs to ♦.

As regards the base, the probability to reach X is 1 from any configuration in X .
As regards the induction step, let us have for any region r with distance ≤ i that
infπ∈Π Pσ∗,π [h](ReachReg(X)) > 0 for any h ending in r. Let us fix any r with
distance i+ 1 and h ∈ r. From the definition of distance, by simple integration,
and from the fact that the region relation is a congruence w.r.t. one step positive
reachability (see the following lemma), we get infπ∈Π Pσ∗,π [h](ReachReg(X))> 0
concluding the proof for one iteration. Note that the following lemma is a game
counterpart of Lemma 4.1.2.

Lemma 6.2.9. Let r1, r2 be regions and z,z′ ∈ r1. For any action a enabled in r1,

PG×A (z,a;r2)> 0 iff PG×A (z′,a;r2)> 0.

Furthermore, we write r1
a
 r2 if PG×A (z,a;r2)> 0 for any (hence every) z ∈ r1.
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Proof. For z = (s,ξ , t,q,ν) with PG×A (z,a;r2) > 0, we show PG×A (z′,a;r2) > 0.
The other direction follows from symmetry. There must be a mode m, an event
e ∈ E(m), and some maximal non-empty interval of time I such that

1. when e occurs in mode m after any time t ′ ∈ I, the game moves to r2;

2. further, a(m)> 0 and
∫

t ′∈I Win(m,e,ξ ; t ′)dt′ > 0 since PG×A (z,a;r2)> 0.

Let us discuss closer the bounds of such maximal interval I. Let F be the set
{〈ξ [m](e)〉 | e∈E(m)}∪{〈ν(x)〉 | x∈X } of fractional parts of the elapsed time of
the events and clocks. Due to the definition of the region relation, either inf I = 0 or
inf I = a−g for some a ∈N and g ∈ A. The event e can be thus triggered either im-
mediately or after the elapsed time of the event or clock corresponding to g reaches
its a-th following integral value. Likewise, either sup I = ∞, or sup I = b− h for
some b ∈ {a,a+1} and h ∈ A; e is triggered either after arbitrary waiting or before
the event or clock corresponding to h reaches its b-th following integral value.

Let F ′ be defined analogously using z′ = (s′,ξ ′, t ′,q′,ν ′) and g′,h′ ∈ F ′ corre-
spond to the same events or clocks as g,h if defined. Let I′ be a non-empty interval
with inf I′ = 0 if inf I = 0 and inf I′ = a−g′, otherwise; and sup I′ = ∞ if sup I = ∞

and sup I′ = b−h′, otherwise. Due to z∼ z′, we have that

1. the game moves to r2 when e occurs in mode m after any time t ′ ∈ I′ when
starting from z′. This follows from the definition of the region relation that
the values from ξ [m]∪ ν and ξ ′[m]∪ ν ′ agree on integral values and their
fractional values have the same order.

2.
∫

t ′∈I′ Win(m,e,ξ ′; t ′)dt′ > 0. Indeed, Win(m,e,ξ ′; t ′) is positive on the whole
I′ because no events’ values may lie in between g′ and h′, i.e. any event
e′ ∈E(m) is supported on the whole (inf I′+ξ ′[m](e′),sup I′+ξ ′[m](e′).

After defining σ∗ on the whole S (σ), let us prove that S (σ∗) ⊆S (σ). Ob-
serve that the strategy σ∗ chooses in any region r ⊆S (σ) an action from the set
A(r) = {a ∈ Act | ∃π ∈ Π : Pσ ,π(Use(a inr)) > 0} where Use(a inr) is a set of
plays that visit r and action a is taken in r. Indeed, only such actions appear in a
guarantee using which σ∗ is defined.

Claim 6.2.10. For any σ∗ restricted to A(r) in any r ⊆S (σ), S (σ∗)⊆S (σ).

Proof. For a contradiction, let us assume that there is a region r 6⊆S (σ) and π ∈Π

such that Pσ∗,π(ReachReg({r}))> 0. Then there is a sequence of regions r0 · · ·rn

such that rn = r and Pσ∗,π(Pattern(r0 · · ·rn)) > 0 where Pattern(r0 · · ·rn) denotes
the plays that visit the respective regions in the first n steps. Indeed, let n be the
smallest index such that the set of plays R that reach r in the n-th step satisfies
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Pσ∗,π(R) > 0. We partition R according to the sequence of regions visited in the
first n steps and obtain finitely many equivalence classes. The sequence of regions
r0 · · ·rn corresponds to one of the equivalence classes that has positive measure. Let
v be the first region in this sequence not contained in S (σ) and let u be the region
preceding v.

If u belongs to player ♦, the strategy π chooses in some histories in u some
action a that leads with positive probability to the region v. Let π ′ be a strategy for
which Pσ ,π ′(ReachReg({u})) > 0 and that chooses a in the whole region u. By
Lemma 6.2.9, we have that Pσ ,π ′(ReachReg({v}))> 0 contradicting v 6⊆S (σ).

If u belongs to player �, let a ∈ A(u) be the action chosen by σ∗ in u. For some
π ∈ Π, there must be a set of plays with positive measure w.r.t. Pσ ,π where σ

gives positive weight to a. Thus, by Lemma 6.2.9, also v is reached with positive
probability, again contradicting v 6⊆S (σ).

The observation that S (σ∗) ⊆ S (σ) concludes the proof of Proposition 6.2.6
because we have shown that σ∗ wins with positive probability for any h ending in
S (σ).

6.2.3 Any region-based candidate strategy is almost-sure winning.

Yet, positive probability of winning of strategy σ∗ guaranteed by Proposition 6.2.6
is not sufficient, in the following we need to show that σ∗ wins almost surely.

Remark 6.2.11. If we consider the restricted case of 1-player games with bounded
intervals and exponentially distributed unbounded events, we can already easily
prove that σ∗ is almost-sure winning using [ACD92] as follows. Fixing σ∗ resolves
all non-determinism and yields a system of the type considered by [ACD92]. Since
we are guaranteed the positive probability of reaching the target, we may apply
Lemma 3 of [ACD92]. However, in the setting of two-player games, we cannot use
this argument directly and some (non-trivial) changes are required.

To finish the proof of the main theorem for two-player games, we show that every
region-based candidate strategy wins with probability 1. This technique is similar
to the one used in Section 5.1.1. Note that the probabilities to reach the target,
guaranteed to be positive by Proposition 6.2.6, can be arbitrarily small. Assume
that these probabilities rapidly decrease as the play goes on; the target is in such
case reached with probability < 1. We need to rule out this case and show that the
probabilities to reach the target are bounded from below by a positive constant.

In order to bound from below the probabilities of reaching the target, we again
use the technique of Alur et al. [ACD92]. We restrict ourselves to δ -separated and
bounded parts of regions where the lower bound exists, see Proposition 6.2.13 be-
low. Because these parts are reached infinitely often with probability one, as shown
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in Proposition 6.2.18, this restriction is without loss of generality. Note that the def-
inition of δ -separation is analogous to Definition 5.1.5, only extended to the clocks
of the observer as well.

Definition 6.2.12. Let δ > 0. A configuration (s,ξ , t,q,ν) is called δ -separated
if for any a,b ∈ {0}∪{ξ (e) | e ∈ E }∪{ν(x) | x ∈X ,ν(x) ≤ B} we have either
|〈a〉−〈b〉| ≥ δ or 〈a〉= 〈b〉. Furthermore, it is called bounded by b if ξ (e)< b for
each e ∈ E .

Reaching the target from a δ -separated configuration

On the following two pages, we prove there is n ∈ N such that the probability of
plays that reach the target within n steps is bounded from below. Recall that these
plays are denoted by RT

n .

Proposition 6.2.13. Let σ∗ be a region-based candidate and δ > 0. There is n ∈N
and ε > 0 such that Pσ∗,π [h](RT

n ) > ε for any π ∈ Π and any h such that its last
configuration z belongs to S (σ∗) and is δ -separated and bounded by C.

The rest of this subsection is devoted to the proof. First, we formally relate δ -
separation to a transition of bounded size (in Lemma 6.2.15) and to its lower bound
on probability (in Lemma 6.2.16).

Definition 6.2.14. For a configuration z, action a enabled in z, and a region r, a set
of configurations X ⊆ r is an a-transition from z if there is a mode m with a(m)> 0,
event e scheduled in m, and interval of time I = (u,u+δ ) such that u <C and

X = {z′ | z′ can be entered from z by waiting time t ′ in m for event e, t ′ ∈ I}.

Furthermore, δ is called the size of the transition.

As the target is reached in multiple steps, we need to keep some separation after
each transition from a δ -separated configuration.

Lemma 6.2.15. Let b > 0, δ > 0, r1 and r2 be regions and a be an action with
r1

a
 r2. For any δ -separated z ∈ r1 bounded by b, there is an a-transition X ⊆ r2

from z of size δ/3 with all z′ ∈ X being δ/3-separated and bounded by b+C.

Proof. Let z ∈ r1 be a δ -separated configuration bounded by b. By similar argu-
ments as in Lemma 6.2.9, it is easy to see that there is an a-transition X ′ ⊆ r of size
δ with all z ∈ X ′ being bounded by b+C. Indeed, waiting longer than C leads only
to a region that is also reachable by waiting for any time t ∈ (C−1,C). By taking
the middle third of the interval corresponding to X ′ we get a transition X ⊂ X ′ with
all z ∈ X being (δ/3)-separated.
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Lemma 6.2.16. Let b > 0 and δ > 0. There is c > 0 such that for any a-transition
X of size δ from a configuration z bounded by b, we have PG×A (z,a;X)> c.

Proof. Let κ = min{a(m) | a ∈ Act,m ∈ M,a(m) > 0} be the minimal discrete
transition probability in the game. Observe that for every m and e ∈ E(m), the
function Win(m,e,ξ ; t ′) is positive and continuous with respect to ξ and t ′ for ξ

and t ′ such that (ξ [m]⊕m t ′)(e′) ≤ ue′ for every e′ ∈ E(m). Hence, if we restrict to
the compact set of parameters with 0≤ ξ (e′)≤ b and 0≤ t ′ ≤C+δ , this function
attains minimum ym,e > 0 for every m ∈M and e ∈ E(m). Let y = min{ym,e | m ∈
M,e ∈ E(m)}. From the definition of the transition law, we get PG×A (z,a;X) >

c := κ ·δ · y.

Let us proceed with the proof of Proposition 6.2.13. For any h ending in S (σ∗),
we have infπ∈Π Pσ∗,π [h](ReachReg(RT )) > 0 since σ∗ is a candidate strategy.
From the fact that σ∗ is region-based and from Lemma 6.2.9 we have the same for
reaching the target in up to |R| steps, i.e. infπ∈Π Pσ∗,π [h](RT

|R|)> 0. For a region
r ⊆ S (σ∗) we thus denote by the distance of r the minimal n ≤ |R| such that
for any h ending in r, we have infπ∈Π Pσ∗,π [h](RT

n ) > 0. The proposition follows
directly from an inductive claim.

Claim 6.2.17. For each n < |R| there is εn > 0 such that for any region r with
distance n we have Pσ∗,π [h](RT

n ) > εn where h is any history ending in r and its
last configuration is (δ/3|R|−n)-separated and bounded by C · (|R|−n).

Proof. As regards the induction base, we set ε0 = 1 and the claim follows. As
regards the induction step, let n < |R|, r be a region with distance n and h be a
history ending in a (δ/3|R|−n)-separated configuration z ∈ r bounded by C · (|R|−
n). Observe that if r is at region of player �, there must be an action a and a region
r′ with distance n−1 such that σ∗ takes a and r

a
 r′. Due to Lemma 6.2.15, there

is an a-transition X ⊆ r′ of size δ ′ = δ/3|R|−n+1 with all z′ ∈ X being δ ′-separated
and bounded by C · (|R| − n + 1). For any z′ ∈ X , we have from the induction
hypothesis Pσ∗,π [hz′](RT

n−1)> εn−1. From Lemma 6.2.16, there is a bound c such
that the transition is taken with probability at least c. Hence, setting εn := εn−1 · c,
we have Pσ∗,π [h](RT

n )> εn.
If r is a region of player ♦, for each action a there must be a region r′ with

distance lower than n and with r
a
 r′. For each such action we proceed analogously

to the previous case using Lemma 6.2.15 and Lemma 6.2.16: there is an a-transition
X of size δ ′ with probability c, each z′ ∈X is δ ′-separated and bounded by C ·(|R|−
n+1). Let εa

n−1 be the probability bound from the induction hypothesis for action
a, the claim holds for εn := c ·min{εa

n−1 | a enabled in z}.
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Reaching a δ -separated configuration

What happens if in these n steps we do not reach RT and leave the δ -separated
parts of the regions? The proof that a candidate strategy is almost-sure winning is
concluded by observing that regardless of the decisions of the players a δ -separated
bounded history is reached almost surely. This way, we repeat infinitely many times
a chance (with probability bounded from below) to reach the target.

Proposition 6.2.18. There is δ > 0 such that for any strategies σ ∈ Σ and π ∈ Π,
a δ -separated configuration bounded by C is reached almost surely from any h.

We fix δ to 1/(6 ·(|E |+ |X |)+2). In the rest of this subsection, the proof is split
into two phases. In the first phase in time t, with probability at least p a bounded
configuration is reached that is separable. It means that any scheduled event oc-
curs with probability bounded from below at such time that it becomes (or stays)
δ -separated. In the second phase, for time t ′ the game moves with bounded prob-
ability among separable configurations; after that a δ -separated configuration is
guaranteed to be reached. Each step of the second phase takes at least time δ with
probability at least q. Thus, a δ -separated configuration is reached from any con-
figuration in time t + t ′ with probability at least p ·qt ′/δ > 0. Hence, it is eventually
reached with probability 1.

We say that a configuration z = (s,ξ , t,q,ν) is separable if there is a mapping
f , called separation plan, that to every event e ∈ E with ξ (e) ∈ (`e,ue) assigns an
interval (se,se +δ )⊆ [0,1] with 〈se〉 ≥ 〈ξ (e)〉 such that for any a,b from the set

{0}∪{ξn(e) | e ∈ E }∪{νn(x) | x ∈X ,νn(x)≤ B}
∪{se,se +δ | e ∈ E ,ξ (e) ∈ (`e,ue)}

we have either 〈a〉= 〈b〉 or |〈a〉−〈b〉| ≥ δ . Further, we say that an event e′ (or clock
x′) is δ -separated in a configuration z = (s,ξ , t,q,ν) if for a = ξ (e′) (or a = ν(x′))
and for any b ∈ {0}∪{ξn(e) | e ∈ E }∪{νn(x) | x ∈X ,νn(x)≤ B} we have either
〈a〉= 〈b〉 or |〈a〉−〈b〉| ≥ δ . The first phase is formalized as follows.

Claim 6.2.19. There is t > 0 and ε > 0 such that Pσ ,π [h](R′n)> ε for any σ ∈ Σ,
π ∈ Π, and history h where R′n are the plays where the first configuration visited
after time t is separable and bounded by 2r+C.

Proof. We split the first phase in two subphases. In the first subphase we reach a
configuration bounded by 2r+C−1, in the second subphase, we reach a separable
configuration bounded by 2r+C.

As regards the first subphase, recall that r bounds the conditional expected wait-
ing times for any event e with ue = ∞ by supb>`e

∫
∞

0 x · fe|b(x)dx ≤ r. Let us fix
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an event e with ue = ∞. From this bound and from the Markov inequality, the
probability that e occurs or stops being scheduled within time 2r is greater than
1− r/2r = 1/2, regardless of the decisions of σ and π . Hence, the probability
that starting from h, all such events occur or stop being scheduled within time 2r
is bounded by 1/2|E |. With this probability, up to this time limit, a configuration
(s,ξ , t,q,ν) is visited where (1) any event e with ue = ∞ satisfies ξ (e) < 2r and
(2) any event e with ue < ∞ satisfies ξ (e)< ue. Such a configuration is bounded by
2r+C−1 since any finite ue satisfies ue ≤C−1.

For the second subphase, let (s,ξ , t,q,ν) be any configuration bounded by 2r+
C + 1. Let E be the set of events e with `e < ξ (e) < ue < ∞. Since the configu-
ration is bounded, there is a positive probability p that each event from E either
occurs or stops being scheduled within 1/2 time unit. The resulting configuration
(s′,ξ ′, t ′,q′,ν ′) is bounded by 2r +C and all events e with `e < ξ ′(e) < ue < ∞

satisfy 〈ξ ′(e)〉< 1/2.
Hence, we set t = 2r+1/2 and we define the mapping f for showing that such

a configuration is separable as follows. The interval [1/2,1] can be partitioned into
3(|E |+ |X |)+1 equally sized intervals of length δ . Some of them are “occupied”
by events with infinite upper bound or by clocks, some other will be “occupied” by
f . Each occupied interval requires its left and right neighbour to be empty. Each
event thus takes up at most 3 intervals and 0 takes up the last interval, there are
enough intervals to define f .

The second phase takes time t ′=max{B,C}. As each transition in the second phase
takes time at least δ , there are in total at most m = t ′/δ transitions, each of bounded
probability. Precisely:

Claim 6.2.20. For any separable configuration z with separation plan f and any
a enabled in z, there is an a-transition X from z induced by mode m, event e, and
interval I such that

(1) e is the event to come according to f , i.e. e has greatest f (e) if dom( f ) 6= /0,

(2) all events and clocks δ -separated in z, the event e, and all clocks reset by the
transition are δ -separated in every z′ ∈ X (as e occurs according to f ),

(3) the time the transition takes satisfies |I|= δ and I ⊆ (δ ,C), and

(4) all z′ ∈ X are separable.

Proof. Let us fix z with separation plan f . Let e be the minimal event in f , i.e.
inf f (e) < inf f (e′) for any other event e′ defined by f . We can assume that f is
maximal in the sense that adding another interval I into f results in a separation
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plan only if sup I < inf f (e) (if not, we can replace I for f (e) and obtain a greater
separation plan). Furthermore, let us fix an action a and an arbitrary mode m with
a(m)> 0. We fix an event e and interval I as follows.

• If E(m)∩dom( f ) 6= /0, we set e to be the event from this set with the greatest
interval in f and I := (1− sup f (e),1− inf f (e)).

• Otherwise, let w ∈ R≥0 be the minimal waiting time such that there is an
event e ∈ E(m) with ξ (e)+w = `e. Further, let a ∈ [0,1] be minimal such
that for any time t from the interval I = (w+a,w+a+δ ) we have:

– δ < 〈ξ (e′)+ t〉< 1−δ for any e′ ∈ E(m);

– δ < 〈ν(x)+ t〉< 1−δ for any x ∈X .

Such a time a exists since for any placement of |E |+ |X | “points” on the
[0,1] line segment there is at least one continuous interval of length 3δ =

1/(|E |+ |X |) without any such point inside.

We need to argue that the set of configurations X induced by z,m,e, and I is an
a-transition from z. In both cases above, this set of configurations is a subset of one
region (due to the definition of separation plan in the first case; due to the defining
conditions on I in the second case). Furthermore, observe that e can indeed occur
after waiting for any t ∈ I since no other event runs out of its upper bound sooner.

Point (1) directly follows from the definition of e. As regards point (2), similarly,
due to the definition of separation plan and due to the defining conditions on I, the
event e and all clocks reset by this transition are δ -separated in every configuration
from X .

As regards point (3), the size of I is clearly δ by definition. In the first case
I ⊆ (δ ,1− δ ) ⊆ (δ ,C) thanks to the definition of separation plan. In the second
case, all points in I are grater than δ because a ≥ δ . Indeed, 〈ξ (e)+w〉 = 0 and
〈ξ (e)+w+a〉 ≥ δ . Furthermore, all points in I are smaller than C since w≤C−1
and since a < 1−δ by similar arguments as above.

As regards point (4), let us fix z′ = (s′,ξ ′, t ′,q′,nu′) ∈ X corresponding to the
waiting time t ′ ∈ I. We define f ′ using f as follows. Let e′ ∈ E(m) such that
e′ 6= e and ξ (e′) ∈ (`e′ ,ue′). If e is an event previously in the separation plan, i.e.
e′ ∈ dom( f ), we set f ′(e′) = {〈a+ t〉 | a ∈ f (e′)}.We sort the events e′ 6∈ dom( f )
that exceed newly their lower bound in the descending order by ξ ′(e′)−`e′ and one
by one set f ′(e′) to the interval (se′ ,se′ +δ ) for the greatest se′ ∈ [0,1] such that f ′

is still a separation plan. In other words, each new event e′ occupies the greatest
available free “slot” of length 3δ that is greater than 〈ξ (e′)〉. Such a se′ exists be-
cause of the maximality of f . Indeed, if the only empty slot is lower than 〈ξ (e′)〉
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this slot could have been taken as a greater slot for the event e in the separation plan
f contradicting its maximality.

After time t ′ ≥C each event occurs at least once since each event occurs within
first time unit after exceeding its lower bound (due to the definition and (1) of
Claim 6.2.20). All clocks that get reset in the second phase are δ -separated, the
remaining clocks have value above t ′ ≥ B. Hence, due to (2) of Claim 6.2.20, the
configuration reached after the second phase is δ -separated. This concludes the
proof of Proposition 6.2.18.

6.2.4 The algorithm

In this section, we show that the existence of a DTA almost-sure winning strategy
is decidable in exponential time, and we also show how to compute such a strategy
if it exists.

Due to Propositions 6.2.3 and 6.2.4, this problem can be equivalently considered
in the setting of the product game G ×A and its region-based strategies. First,
we show that this problem can be further reduced to the problem of computing
wining strategies in a finite stochastic reachability game [G ×A ] induced by the
product game G ×A . Second, we provide an algorithm solving the problem using
this reduction. Let us define the game [G ×A ]:

• The set of vertices of [G ×A ] is V = R ∪{(r,a) | r ∈R,a is enabled in r}.

• For each control state s, the game starts with probability α0(s) in the vertex
vs ∈ R such that vs = {(s,0,q,0)} where q is the location visited after A
reads s in its configuration (q0,0).

• The game moves from vertex to vertex, forming an infinite play v0 v1 · · · . In
each vertex vi ∈R, the successor vertex vi+1 is chosen by one of the players,
whereas in each vertex of the form vi = (r,a) the successor vertex vi+1 is
chosen randomly.

– Player � ∈ {�,♦} controls a vertex r ∈R if its control state s satisfies
s ∈ S�. The player � chooses in such a vertex r one of the stochastic
vertices (r,a) where a is enabled in r.

– From each stochastic vertex of the form (r,a), there are transitions to
all vertices r′ ∈R, such that r

a
 r′. The probability distribution on the

set of outgoing transitions from each stochastic vertex is uniform.

Player � tries to reach the set RT of target regions (which is the same as in the
product game) and player ♦ tries to avoid it. We say that a strategy σ is positional
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if it satisfies σ(v1 · · ·vn) = σ(v′1 · · ·v′m) for any histories with vn = v′m. Further, we
say that a strategy σ of player � is almost-sure winning if for any strategy π of
player ♦, the set RT is reached almost surely when playing according to σ and π .

The following proposition states the correctness of the reduction. Slightly abus-
ing the notation, we consider region-based strategies to be strategies in both G ×A
and [G ×A ]. Indeed, a region-based strategy for the product game G ×A induces
a unique positional strategy for the game [G ×A ], and vice versa.

Proposition 6.2.21. Let G be a game and A be a DTA. A region-based strategy
σ ∈ Σ is almost-sure winning in [G ×A ] iff it is almost-sure winning in G ×A .

Proof. Intuitively, it might seem surprising that we set all the probability distribu-
tions in [G ×A ] to be uniform. Since we are interested only in qualitative reacha-
bility and due to Lemma 6.2.9, we show that this is sufficient for our purposes.

“⇒” Let us fix a region-based strategy σ ∈ Σ almost-sure winning in [G ×A ].
For this fixed σ , let SG×A and S[G×A ] be the regions that are reached with positive
probability in G ×A and [G ×A ] for some π , respectively. We show that (a) σ

reaches the target in G ×A with positive probability from any h ending in S[G×A ]

and for any π ∈ Π and that (b) SG×A ⊆S[G×A ]. These two points imply that σ

is a candidate strategy and hence, by Propositions 6.2.13 and 6.2.18, σ is also an
almost-sure winning strategy.

(a) Let h be a history ending in SG×A in a region r. Let us fix an arbitrary strat-
egy π ∈ Π. Let π ′ be a strategy that (1) satisfies π ′(z0 · · ·zn) = π(z′0 · · ·z′n) if
z0 ∼ z′0, . . . ,zn ∼ z′n and (2) after traversing any sequence of regions r0 · · ·rn

it chooses an action that is chosen with positive probability by π in a set of
plays of non-zero measure that traverse the regions r0 · · ·rn. Such a strategy
can be easily built inductively similarly to Claim 6.2.8. The strategy π ′ is
also a (non-positional) strategy in [G ×A ]. Since σ is winning in [G ×A ],
it guarantees reaching the target RT from r with positive probability in at most
2 · |R| steps (that correspond to |R| steps in G ×A ) against any strategy π ′.
Hence, also in the product game, we have Pσ ,π ′

G×A [h](RT
|R|) > 0 where RT

|R|
are the plays that reach the target within |R| steps. From the definition of π ′,
we also have Pσ ,π ′

G×A [h](R′|R|) > 0 where R′|R| are the plays that reach the tar-
get within |R| steps and where the strategies π ′ and π take the same actions.
Hence, Pσ ,π

G×A [h](R′|R|)> 0 and thus Pσ ,π
G×A [h](ReachReg(T ))> 0.

(b) For the sake of contradiction, let π ∈ Π and r0 · · ·rn be a sequence of regions
such that Pσ ,π

G×A (Pattern(r0 · · ·rn)) > 0 and rn is the first region in this se-
quence not in S[G×A ]. If rn−1 belongs to �, rn is reached also in [G ×A ] as
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� plays the same in both games and the construction preserves reachability in
one step. If rn−1 belongs to ♦, there must be (from Lemma 6.2.9) an action a
such that rn−1

a
 rn. There is a strategy π using which the region rn−1 is reached

in [G ×A ] and that chooses a in rn−1. The strategy π also reaches rn. In both
cases we obtain a contradiction rk+1 ∈S[G×A ].

“⇐” We show the “if” part by contraposition. Assume that a positional strategy
σ is not almost-sure winning in [G ×A ]. Observe that there is π and a region bad
with Pσ ,π

[G×A ](ReachReg({bad})) > 0 such that from bad the probability to reach
RT is zero. For this pair of region-based strategies σ and π , the same holds also
for G ×A . Namely, Pσ ,π

G×A (ReachReg({bad}))> 0 and from the construction of
[G ×A ] and from Lemma 6.2.9, Pσ ,π

G×A [h](ReachReg(RT )) = 0 for any history h

ending in bad. Hence, the region-based strategy σ is not almost-sure winning.

The reduction to the finite game now straightforwardly yields Algorithm 1 that
solves the problem introduced by Theorem 6.2.2. The algorithm uses the following
symbolic representation of regions. Similarly to [AD94], a region visited with pos-
itive probability can be represented by a triple (s,q,Ξ) where Ξ is called an area
and contains

• for every element x ∈ E ∪X , one constraint from the set

{x = 0}∪{c−1 < x < c | 1≤ c≤ D}∪{x > D};

• for all x,y∈ E ∪X with constraints c−1< x < c and d−1< y< d in (1) for
some c,d ∈ N, one constraint from the set {〈x〉< 〈y〉,〈x〉= 〈y〉,〈y〉< 〈x〉}.

Observe that the set of all these triples is finite and can be easily constructed. Fur-
ther, the algorithm uses the following operations over areas. Let Ξ be an area.

Reset Let X ⊆ (E ∪X ) be a reset set. By Ξ[X := 0] we denote an area obtained
from Ξ by removing all constraints with any x ∈ X and adding x = 0 for any x ∈ X ,
〈x〉= 〈y〉 for any x,y ∈ X , and 〈x〉< 〈y〉 for any x ∈ X and y ∈ (E ∪X )\X .

Guard satisfaction For a clock constraint g, we write Ξ |= g if the set of configu-
rations satisfying the constraints Ξ is the same as the set of configurations satisfying
the constraints Ξ∪g. By case distinction, this is guaranteed if

1. g = g1∧g2 and Ξ |= g1 and Ξ |= g2;

2. g = x≤ b or g = x < b and Ξ contains x = 0 or c−1 < x < c for c≤ b;

3. g = x≥ b or g = x > b and Ξ contains x > D or c−1 < x < c for c−1≥ b.
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Time successor Let m be a mode. The time-successor(Ξ,m) is undefined if Ξ

contains a constraint x >D for all x from E(m)∪X ; or Ξ contains a constraint ue−
1 < e < ue and no constraint of the form 〈e〉< 〈x〉 for some e ∈ E(m). Otherwise,
time-successor(Ξ,m) is an area obtained from Ξ as follows.

• If Ξ contains no constraints of the form c−1 < x < c, then constraints of the
form x = 0 are replaced by 0 < x < 1 for all x ∈ E(m)∪X .

• Otherwise, for every x ∈ (E(m)∪X ) such that Ξ contains a constraint of
the form c− 1 < x < c but no constraint 〈x〉 < 〈y〉 (i.e., that has maximal
fractional part), we replace in Ξ each 〈y〉 < 〈x〉 by 〈x〉 < 〈y〉 and we replace
c−1 < x < c by c < x < c+1 if c < D or by x > D, otherwise.

After properly defining all parts of Algorithm 1, observe that its correctness fol-
lows from Proposition 6.2.21 and from the following proposition.

Proposition 6.2.22. Procedure Construct terminates and constructs [G ×A ].

Proof. The algorithm terminates because for any area Ξ there is a n such that
time-successorn(Ξ) is undefined. Indeed, in each iteration of time-successor either
c is incremented in the constraint c−1 < x < c for at least one element x or such a
constraint is replaced by x > D.

As regards constructing [G ×A ], the only non-trivial part is that (r,a) r′ if and
only if r

a
 r′. Observe that the procedure Construct satisfies that if (r,a) r′, then

for some z∈ r the set r′ is an a-transition from z of positive size (see Section 6.2.3).
Hence PG×A (z,a;r′)> 0 and thus r

a
 r′. If we have r

a
 r′, then r′ is an a-transition

of positive size from some z ∈ r. The interval corresponding to the a-transition
is abstractly captured by the “flow of time” computed by time-successorn(Ξ) for
some n ∈ N and hence, the transition (r,a)  r′ is added within the procedure
Construct.

We conclude the section by the complexity analysis of Algorithm 1. Since there
are exponentially many regions (w.r.t. the number of clocks and events), the size
of [G ×A ] is exponential in the size of G and A . Note that two-player stochas-
tic games with qualitative reachability objectives are easily solvable in polynomial
time [AHK98]. Due to Propositions 6.2.3 and 6.2.4 there is a (DTA) almost-sure
winning strategy in G with A iff there is a region-based almost-sure winning strat-
egy in G ×A ; and due to Proposition 6.2.21, there is a region-based almost-sure
winning strategy in G ×A iff there is an almost-sure winning strategy in [G ×A ].
Furthermore, the (positional) almost-sure winning strategy in [G ×A ] can be trans-
formed into a DTA almost-sure winning strategy in G with A . Since all transfor-
mations of the strategies are trivially effective, we conclude the proof of Theorem
6.2.2 by the following proposition.
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Algorithm 1: Decide whether � has a DTA almost-sure winning strategy
input : G = (S�,S♦,M,E ,E,Succ,Act,A,α0), A = (Q,Σ,X ,−→,q0,T )
output: YES + an almost-sure winning DTA strategy if it exists; NO if not

1 [G ×A ]← Construct(G , A )
2 W ← compute the set of almost-sure winning vertices in [G ×A ] by [AHK98]
3 σ ← compute the optimal positional strategy in [G ×A ] by [AHK98]

4 if every initial vertex in [G ×A ] belongs to W then
5 return YES + the DTA strategy σ↓ induced by the region-based σ

6 else
7 return NO

Procedure Construct(G ,A )
input : G = (S�,S♦,M,E ,E,Succ,Act,A,α0), A = (Q,Σ,X ,−→,q0,T )
output: game [G ×A ] = (V,(V�,V♦,V©), ,P, init)

1 V�← S�×Q×N for both � ∈ {�,♦} where N is the set of areas
2 V©←{(v,a) | v ∈V�∪V♦,a ∈ Act,a is enabled in v}
3 V ←V�∪V♦∪V©
4  ← /0
5 for all s ∈ S and for q with (q0,s,g,X ,q) ∈−→, and g |= 0 do
6 init((s,q,{x = 0 | x ∈ E ∪X }))← α0(s)

7 for all (v,a) ∈V© with v = (s,q,Ξ) do
8 add to a pair (v,(v,a))
9 for all modes m ∈M with a(m)> 0 do

10 Ξm← Ξ[X := 0] where X = E \E(m)

11 while Ξm has a time successor in m do
12 Ξm← time-successor(Ξm,m)

13 for all events e with Ξm |= `e ≤ e≤ ue do
14 s′← Succ(m,e)
15 for all edges (q,s′,g,X ,q′) in the automaton A do
16 if Ξm |= g then
17 Ξ′← Ξm[X ∪{e} := 0]
18 add to a pair ((v,a),(s′,q′,Ξ′))
19 P((v,a))← uniform distribution

20 return (V,(V�,V♦,V©), ,P)
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Proposition 6.2.23. Let G be a GSMG and A be a DTA. In time exponential in |G |
and |A |, Algorithm 1 decides whether player � has a (DTA) almost-sure winning
strategy and computes it if it exists.

6.3 Büchi specifications

In this section, we show that the results from qualitative reachability specifications
can be employed to solving qualitative Büchi specifications. Let us fix a Büchi
specification BüchiA (T ) over a set of locations T and restrict to the value 1. Simi-
larly to Proposition 6.2.1, Figure 6.2 also shows that player � is not guaranteed to
have an optimal strategy for the Büchi specification.

Theorem 6.3.1. If there is (some) strategy of player � that is almost-sure winning
with respect to BüchiA (T ), then there is also a DTA almost-sure winning strategy.
Furthermore, there exists an algorithm that in exponential time (1) decides whether
there is a DTA almost-sure winning strategy and (2) computes it if it exists.

Compared to the previous section, the proof is rather straightforward by using
the results for reachability. We split the statement into two claims.

Claim 6.3.2. If there is (some) strategy of player � that is almost-sure winning
with respect to BüchiA (T ), then there is also a DTA almost-sure winning strategy.

Proof. First, observe that the product construction can be directly applied to the
Büchi specification. Let Büchi(T ) denote the set of plays in the product game that
visit T infinitely often. Let us fix a strategy σ almost-sure winning in G ×A which
we have thanks to Propositions 6.2.3 (easily adapted to the Büchi specification).

Observe that there must be a set of configurations from the target regions Z ⊆⋃
r∈RT

r such that

1. the set Z is reached with probability one, i.e. infπ∈Π Pσ ,π
G×A (Reach(Z)) = 1;

2. from Z, the set Z is reached again with probability one. For the following
proof it suffice to claim that for every z ∈ Z, there is a history hz such that
infπ∈Π Pσ ,π

G×A [hz](Reach′(Z)) = 1 where Reach′(Z) is the set of plays that
reach a configuration in Z after at least one step.

Firstly, let R be the smallest set of regions containing Z, i.e. for each r ∈ R there
is some z ∈ Z such that z ∈ r. From the first point and from Propositions 6.2.6,
6.2.13, and 6.2.18, there is a region-based strategy σ ′ such that

inf
π∈Π

Pσ ′,π
G×A (ReachReg(R)) = 1. (6.3)
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Secondly, let us fix any region r ∈ R and any z ∈ Z∩ r. Furthermore, let hz be the
history satisfying the second point above. Let us alter the game a bit: we add into
the game another non-target copy r̄ of the region r. The altered game, denoted by
(G ×A )r, starts in the configuration z̄ ∈ r̄ corresponding to z. From the fact that
infπ∈Π Pσ ,π

G×A [hz](Reach′(Z)) = 1, we get infπ∈Π Pσ ′,π
(G×A )r

(Reach(Z)) = 1 where
σ ′(h′) = σ(hh′). Hence, we again obtain by Propositions 6.2.6, 6.2.13, and 6.2.18
a region-based strategy σr that guarantees reaching R in (G ×A )r almost surely.
Furthermore, observe that by Lemma 6.2.9, σr also guarantees

inf
π∈Π

Pσr,π
G×A [h′](ReachReg′(R)) = 1 for any h′ ending in r (6.4)

where ReachReg′(R) are the set of plays that reach a region in R after at least one
step. We define the region-based strategy σ∗ using the strategy σ ′ and the strategies
(σr)r∈R. The strategy behaves as σ ′ until R is reached; then it behaves as σr if the
last visited region from R is r. As region-based strategies take actions only based
on the current region, we need to encode into the regions the information necessary
for σ∗ to decide.

To this end, let us create another DTA observer A ′ with set of locations Q×
R× ({0}∪R) that in the first component behaves as A ; in the second component
it stores the current region of G ×A which it simulates on the fly; and in the third
component it stores the last visited region from R (initially set to 0). The construc-
tion to update the second component is straightforward and fully explained in the
proof of Proposition 6.2.4, hence we do not repeat it here. Once the second com-
ponent stores the current region, the construction to update the third component is
straightforward as well. We base the target locations T ′ = {(q,r,r′) | q ∈ T} on the
first component.

We define the region-based strategy σ∗ for G ×A ′. For a region r of G ×A ′,
let [r] denote the corresponding region of G ×A by projecting out the second
and the third component of A ′. In every region r of G ×A ′ with location of the
form (q,r′,0), we set σ∗(r) = σ ′([r]). In every region r with location of the form
(q,r′,r′′), we set σ∗(r) = σr′′([r]). Thanks to (6.3) and (6.4) we show that

inf
π∈Π

Pσ∗,π
G×A ′(ReachReg(R)) = 1,

inf
π∈Π

Pσ∗,π
G×A ′ [h

′](ReachReg′(R)) = 1 for any h′ ending in R.

Assume the opposite that there is a strategy π in the game G ×A ′ (and history h′)
contradicting one of the equalities. As the additional information in the locations
of A ′ is deterministic and based on the history, we easily obtain a strategy π ′ in
G ×A that contradicts one of the equalities (6.3) and (6.4).
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The two equalities above imply that σ∗ is almost sure winning in G ×A ′ with
respect to Büchi(T ′). Thanks to Proposition 6.2.4 (easily adapted to the Büchi spec-
ification), we get a DTA strategy that is almost sure winning w.r.t. BüchiA ′(T ′). As
for each play ω we have ω ∈ BüchiA ′(T ′) iff ω ∈ BüchiA (T ), this strategy is also
almost-sure winning w.r.t. BüchiA (T ).

The algorithm to solve the problem is the same as Algorithm 1, only the poly-
nomial algorithm to solve qualitative stochastic reachability games on lines 2 and
3 is replaced by the polynomial algorithm to solve qualitative stochastic Büchi
games [JKH02]. Hence, the complexity is the same as in Theorem 6.2.2. It remains
to show that this algorithm is correct.

Claim 6.3.3. With respect to visiting T infinitely often, a region-based strategy σ ∈
ΣG×A is almost-sure winning in [G ×A ] iff it is almost-sure winning in G ×A .

Proof. We again reuse the results from reachability specifications.

“⇒” Let us fix a region-based strategy σ ∈ΣG×A almost-sure winning in [G ×A ].
Then there is a set of regions R⊆RT such that

1. σ is almost-sure winning with respect to reaching R and
2. from any history ending in R it guarantees revisiting R.

Similarly to the previous proof, let (G ×A )z denote a product game where we du-
plicate the region of z, make it non-target, and start in configuration of the duplicate
region corresponding to z. From Proposition 6.2.21, we get that σ is almost-sure
winning in G ×A with respect to visiting R infinitely often because

1. σ is also almost-sure winning in G ×A with respect to reaching R.
2. Let z be any configuration from a region from R. The strategy σ is also

almost-sure winning in [(G ×A )z] with respect to reaching R. Hence, σ is
also almost-sure winning in (G ×A )z with respect to reaching R.

“⇐” Assume that a positional strategy σ is not almost-sure winning in [G ×A ].
Observe that there is π and a region bad ∈ T with Pσ ,π

[G×A ](ReachReg({bad})) >
0 such that from bad the probability to revisit T is smaller than 1. For this pair
of region-based strategies σ and π , the same holds also for G ×A . Namely, the
probability Pσ ,π

G×A (ReachReg({bad})) > 0 and from the construction of [G ×A ]

and from Lemma 6.2.9, Pσ ,π
G×A [h](ReachReg′(T )) = 0 for any history h ending in

bad. Hence, the region-based strategy σ is not almost-sure winning.

This claim concludes the proof of Theorem 6.3.1 and also the whole Chapter 6.
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Chapter 7

Conclusions

In the thesis we have studied stochastic stability of discrete-event systems enriched
with hard real-time bounds. Most of the text has addressed the formalism of gener-
alized semi-Markov processes with fixed-delay events.

We have discovered unstable behaviour previously unnoticed, thus contradicting
several previous results. Namely, we have found that the previous verification algo-
rithm of GSMP with fixed-delay events against qualitative Büchi specifications is
incorrect. Furthermore, by showing that GSMP with fixed-delay events (and vari-
ous related formalism) do not need to have their steady-state distribution, we have
shown that various previous algorithms for approximating the steady-state distri-
bution are incorrect on these models.

Then, we have described a stable subclass of single-ticking GSMP with fixed-
delay events. By a technically demanding proof, we have shown that every single-
ticking GSMP has its frequency measures almost-surely well-defined. We have also
proven stability of GSMP observed by DTA by reducing them to single-ticking
GSMP. Furthermore, we have proven stability of almost-monotone DSPN again by
reducing them to single-ticking GSMP. Finally, we have shown that our stability
results imply effective approximability of the frequency measures.

Finally, we have defined a novel game extension of GSMP, namely the general-
ized semi-Markov games. It is a two-player turn-based complete-information game
where each player controls its set of control states and chooses one of finitely many
actions. The players control the game only after each occurrence of an event. The
stochastic nature of the model when waiting for events is the same as in GSMP.
We have addressed the qualitative analysis of GSMG observed by DTA with reach-
ability and Büchi specifications. As our goal has been better understanding of the
structure of the game, we have studied the structure of almost-sure winning strate-
gies. By a delicate proof, we have shown that strategies of finite structure – that can
be captured by a DTA – suffice for almost-sure winning of �. A part of the proof
techniques are similar to the techniques used in the previous chapter. However,
various additional insights were necessary for the proofs in the game setting.

Overall, we believe that the thesis has filled a gap in the literature by provid-
ing a fundamental material on DES with fixed-delay events. Fixed-delay events
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are an important modelling concept for probabilistic verification as well as perfor-
mance evaluation. Therefore, better understanding the structure of the models and
the boundaries of what can be analysed is crucial.

7.1 Future and ongoing work

The subclass of single-ticking GSMP is not an exact characterization of stable
GSMP. One promising area for future work is exploring the models beyond this
subclass. There are many questions to ask:

1. Is it possible to provide an exact characterization of models where all the
frequencies are almost-surely well-defined?

2. If yes, is the region graph a sufficient structure to characterize the qualitative
behaviour of all stable models? This question is important from the algo-
rithmic point of view as finding regions (or elements of some other finite
partition of the space of configurations) that are revisited with probability
one is a crucial step in the quantitative analysis of the models.

3. Given a model and one of its states such that the frequencies of this state are
almost-surely well-defined, is it possible to approximate the distribution of
the frequencies?

Based on our ongoing work, we conjecture that the questions 1. and 3. have a
negative answer and that these problems are undecidable.

Another wide area for future research are the two-player games over discrete-
event systems.

• Inspired by the recent application of two player games to compositional ver-
ification of Interactive Markov Chains [BHK+12; HKK13], we propose to
adapt this approach to the non-Markovian setting. The external player ♦
in their setting also controls timing of some (external) events and models
this way the unknown environment of the component to verify. As the non-
Markovian behaviour brings many complications in the analysis, it may be
advisable to start with a restricted class of models, such as only with expo-
nential and fixed-delay events.

• Another possibility is to extend the analysis of GSMG to the quantitative
case. First of all, is the quantitative analysis decidable? Are there any effi-
cient algorithms for interesting types of specifications? Are there ε-optimal
strategies with some reasonably small representation?

All in all, the are various promising directions for extending the research pre-
sented in the thesis.
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tinuous-Time Stochastic Games with Time-Bounded Reachability”.
In: Proceedings of the 29th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS). LIPIcs.
Schloss Dagstuhl, 2009, pp. 61–72.

[BFK+13] T. Brázdil, V. Forejt, J. Krčál, J. Křetínský, and A. Kučera. “Con-
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“Time for statistical model checking of real-time systems”. In: Pro-
ceedings of 23rd International Conference on Computer Aided Ver-
ification (CAV). Springer. 2011, pp. 349–355.

[Dos79] B. T. Doshi. “Generalized semi-Markov decision processes”. In:
Journal of Applied Probability (1979), pp. 618–630.

[GGH+12] C. C. Guet, A. Gupta, T. A. Henzinger, M. Mateescu, and A. Sez-
gin. “Delayed continuous-time Markov chains for genetic regulatory
circuits”. In: Proceedings of 24th International Conference on Com-
puter Aided Verification (CAV). Springer. 2012, pp. 294–309.

[GL94] R. German and C. Lindemann. “Analysis of stochastic Petri nets by
the method of supplementary variables”. In: Performance Evaluation
20.1-3 (1994), pp. 317–335.

[Gly83] P. W. Glynn. “On the role of generalized semi-Markov processes in
simulation output analysis”. In: Proceedings of the 15th conference
on Winter simulation-Volume 1. IEEE Press. 1983, pp. 39–44.

[Gly89] P. Glynn. “A GSMP formalism for discrete event systems”. In: Pro-
ceedings of the IEEE 77 (1989), pp. 14–23.

[GY94] P. Glasserman and D. D. Yao. Monotone structure in discrete-event
systems. John Wiley & Sons, Inc., 1994.

[Haa10] P. Haas. Stochastic Petri Nets: Modelling, Stability, Simulation.
Springer Series in Operations Research and Financial Engineering.
Springer, 2010.

[Her02] H. Hermanns. Interactive Markov Chains: The Quest for Quantified
Quality. Vol. 2428. Lecture Notes in Computer Science. Springer,
2002.

[HG01] S. G. Henderson and P. W. Glynn. “Regenerative steady-state sim-
ulation of discrete-event systems”. In: ACM Transactions on Mod-
eling and Computer Simulation (TOMACS) 11.4 (2001), pp. 313–
345.

[HG02] P. Haas and P. Glynn. “On Simulation Output Analysis for General-
ized Semi-Markov Processes”. In: Performance Evaluation Review
30 (2002). Special issue on the 4th Workshop on Mathematical Per-
formance Modeling and Analysis (MAMA 2002), pp. 34–37.

112



BIBLIOGRAPHY

[HH13] H. Hafeti and H. Hermanns. “Improving Time Bounded Computa-
tions in Interactive Markov Chain”. In: Proceedings of the 5th IPM
International Conference on Fundamentals of Software Engineering
(FSEN). Springer, 2013, pp. 250–266.

[Hil96] J. Hillston. A compositional approach to performance modelling.
Cambridge University Press New York, NY, USA, 1996.
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