Program Verification Using Separation Logic

Dino Distefano Queen Mary University of London

Lecture 2

Today's plan

- Programming language & semantics
- Small axioms
- Frame Rule
- Tight interpretation of triples

Simple Imperative Language

Safe commands:

```
S::= skip | x:=E | x:=new()
```

Heap accessing commands:

```
A(E) ::= dispose(E) | x:=[E] | [E]:=F
```

where E is and expression x, y, nil, etc.

Command:

```
© C::= S | A | C1;C2 | if B { C1 } else {C2} | while B do { C }
```

where B boolean guard E=E, E!=E, etc.

Semantics of Programs

The concrete semantics of the language is given by a operational semantics:

$$\circ$$
 (s,h),C ===>err (or T)

err is a special error state indicating a memory violation

Concrete semantics

$$\frac{\mathcal{C}[\![E]\!]s = n}{s, h, x := E \implies (s|x \mapsto n), h}$$

$$\frac{\mathcal{C}[\![E]\!]s = \ell \quad h(\ell) = n}{s, h, x := [E] \implies (s|x \mapsto n), h}$$

$$\frac{\mathcal{C}[\![E]\!]s = \ell \quad \mathcal{C}[\![F]\!]s = n \quad \ell \in dom(h)}{s, h, [E] := F \implies s, (h|\ell \mapsto n)}$$

$$\frac{\ell \not\in dom(h)}{s,h,\, \mathsf{new}(x) \implies (s|x \mapsto \ell), (h|\ell \mapsto n)}$$

$$\frac{\mathcal{C}[\![E]\!]s = \ell}{s, h * [\ell \mapsto n], \, \mathsf{dispose}(E) \implies s, h}$$

$$\frac{\mathcal{C}[\![E]\!]s \not\in dom(h)}{s, h, A(E) \Longrightarrow \top}$$

Hoare Logic

- A Hoare triple is a formula P C Q where
 - P, Q are formulae in a base logic (e.g. first order logic, separation logic, etc.)
 - © C is a program in our language
 - P is called precondition
 - Q is called postcondition

Semantics of Hoare triples

- Partial correctness:

 | starting from a state s,h |= P, whenever the execution of C terminates in a state (s',h') then s',h'|= Q
- Total correctness: [P] C [Q] is valid iff starting from a state s,h|= P,
 - Every execution terminates
 - when an execution terminates in a state (s',h') then s',h'|=Q.

Semantics of Hoare triples

- Partial correctness: It is valid iff starting from a state s,h |= P, whenever the execution of C terminates in a state (s',h') then s',h'|= Q
- Total correctness: [P] C [Q] is valid iff starting from a state s,h|= P,
 - Every execution terminates
 - when an execution terminates in a state (s',h') then s',h'|=Q.

```
{ y+z>4 } y:=y+z-1; x:=y+2 { x>5 }
```

```
{ y+z>4 } y:=y+z-1 { y > 3 }
{ y+z>4 } y:=y+z-1; x:=y+2 { x>5 }
```

```
{ y+z>4 } y:=y+z-1 { y > 3 } { y>3 } x:=y+2 { x > 5 }
{ y+z>4 } y:=y+z-1; x:=y+2 { x>5 }
```

```
{P /\ B} C1 {Q} {P /\ IB} C2 {Q}
{P} if B then C1 else C2 {Q}
```

```
{P /\ B} C1 {Q} {P /\ !B} C2 {Q} 
{P} if B then C1 else C2 {Q}
```

```
{ (y>4) } if z>1 then y:=y+z else y:=y-1 { y>3 }
```

```
{P /\ B} C1 {Q} {P /\ !B} C2 {Q}
{P} if B then C1 else C2 {Q}
```

Example:

```
{ (y>4) / (z>1) } y:=y+z { y>5 }
```

{ (y>4) } if z>1 then y:=y+z else y:=y-1 { y>3 }

```
{P /\ B} C1 {Q} {P /\ IB} C2 {Q} {P | IB} C2 {Q} {P | IB} C2 {Q} {P} if B then C1 else C2 {Q}
```

$$\frac{P ==>P'}{\{P'\} C \{Q'\}} \qquad Q' ==>Q \\ \{P\} C \{Q\}$$
 consequence

Note: there are other rules, eg conjuction, quantifiers Example:

$$\frac{P ==>P'}{\{P'\} C \{Q'\}} \qquad Q' ==>Q \\ \{P\} C \{Q\}$$
 consequence

Note: there are other rules, eg conjuction, quantifiers Example:

$${ (y>4) / (z>1) } y:=y+z { y>3 }$$

$$\frac{P ==>P'}{\{P'\} C \{Q'\}} \qquad Q' ==>Q \qquad consequence$$

$$\{P\} C \{Q\}$$

Note: there are other rules, eg conjuction, quantifiers

$$\{ y+z>5 \} y:=y+z \{y>5 \}$$

$$\{ (y>4) / (z>1) \} y:=y+z \{ y>3 \}$$

$$\frac{P =\Rightarrow P'}{\{P'\} C \{Q'\}} \qquad Q' =\Rightarrow Q}{\{P\} C \{Q\}}$$
 consequence

Note: there are other rules, eg conjuction, quantifiers

$$(y>4) / (z>1) ==> (y+z>5) { y+z>5 } y:=y+z {y > 5}$$

{ $(y>4) / (z>1) } y:=y+z { y>3 }$

$$\frac{P =\Rightarrow P'}{\{P'\} C \{Q'\}} \qquad Q' =\Rightarrow Q \qquad consequence \\ \{P\} C \{Q\}$$

Note: there are other rules, eg conjuction, quantifiers

Small Axioms

```
    { x=m /\ emp } x:=E { x=(E[m/x]) /\ emp}

    { E|->- } [E]:=F { E|->F }

 where x,m,n are assumed to be distinct variables
```

These axioms mention only the local state which is touched, called footprint

Observation

- A Hoare triple describes the effect an action has on the portion of program store it explicitly mentions.
- It does not say what cells among those not mentioned remain unchanged.

Observation

- A Hoare triple my describes the effect an action has on the portion of program store it explicitly mentions.
- It does not say what cells among those not mentioned remain unchanged.

We want instead to say:

any state alteration not explicitly required by the specification is excluded

Idea: focus on footprint

- © Change the interpretation of the Hoare triple {P} C {Q}, so that C must only dereference cells guaranteed to exists by P or allocated by C itself
- Add an inference rule to obtain bigger specifications from small ones.

Idea: focus on footprint

The portion of memory touched by a command

- © Change the interpretation of the Hoare triple {P} C {Q}, so that C must only dereference cells guaranteed to exists by P or allocated by C itself
- Add an inference rule to obtain bigger specifications from small ones.

Memory faults

- Some commands can "go wrong" for example:
 - o dispose(x) or [x]:=y or x:=[y]
- Examples:

```
x=new();
y:=x;
dispose(x);
[y]:=nil;
```

Memory faults

- Some commands can "go wrong" for example:
 - o dispose(x) or [x]:=y or x:=[y]
- Examples:

Tight Interpretation of Triples

The interpretation of the triples in separation logic ensures that a program does not fault!

```
\{P\} C \{Q\} holds iff \forall s,h. if s,h\models P then \neg C,s,h\to^* \text{err} and, if C,s,h\to^* s',h' then s',h'\models Q
```

This ensure that a well-specified programs access only the cells guaranteed to exist in the precondition or created by C

Aliasing and Soundness

In traditional Floyd-Hoare logic, the rule of constancy:

$$\frac{\{P\}\,C\,\{Q\}}{\{P\wedge R\}\,C\,\{Q\wedge R\}}\ \operatorname{Modify}(\mathsf{C})\cap\operatorname{Free}(\mathsf{R})=\emptyset$$

allows modular reasoning for sequential as well as parallel programs.

Aliasing and Soundness

In traditional Floyd-Hoare logic, the rule of constancy:

$$\frac{\{P\}\,C\,\{Q\}}{\{P\wedge R\}\,C\,\{Q\wedge R\}}\,\operatorname{Modify}(\mathsf{C})\cap\operatorname{Free}(\mathsf{R})=\emptyset$$

allows modular reasoning for sequential as well as parallel programs.

This rule is unsound in presence of pointers

Aliasing and Soundness

In traditional Floyd-Hoare logic, the rule of constancy:

$$\frac{\{P\}\,C\,\{Q\}}{\{P\wedge R\}\,C\,\{Q\wedge R\}}\,\operatorname{Modify}(\mathsf{C})\cap\operatorname{Free}(\mathsf{R})=\emptyset$$

allows modular reasoning for sequential as well as parallel programs.

This rule is unsound in presence of pointers

```
{ [x]=3 } [x]:=7 { [x]=7 } 
{ [x]=3 / [y=3] } [x]:=7 { [x]=7 / [y]=3}
```

Frame Rule

$$\frac{\{P\}C\{Q\}}{\{P*R\}C\{Q*R\}} \ \operatorname{Modifies}(C) \cap \operatorname{FV}(R) = \emptyset$$

R is the frame (it can be added as invariant)

* and err-avoiding triple take care of the heap access of C

The side condition takes care of the stack access

Note:

 $Modify(x:=E)=Modify(x:=[E])=Modify(x:=new(E1,...,Ek))=\{x\} \ and \ Modify([E]:=F)=Modify(dispose(E))=\{\}$

Example using the Frame Rule

$${x|->-} [x]:=z {x|->z}$$

$${y|->c * x|->-} [x]:=3 {x|->z * y|->c}$$

Example

Let's assume:

 $\{ x|->1,2 \} C \{ z|-> 3,2 \}$

and C modifies only the heap.

Example

Let's assume:

```
\{x|->1,2\} \in \{z|->3,2\}
and C modifies only the heap.
If we give C more heap \{x|->1,2 * y|->17,42\} \in \{z|->3,2* ??????}
```

Let's assume:

```
\{x|->1,2\} \in \{z|->3,2\}
and C modifies only the heap.
If we give C more heap \{x|->1,2 * y|->17,42\} \in \{z|->3,2 * y|->17,42\}
```

Let's assume:

```
\{x|->1,2\} \in \{z|->3,2\}
and C modifies only the heap.
If we give C more heap \{x|->1,2 * y|->17,42\} \in \{z|->3,2 * y|->17,42\}
```

We are sure that cell y cannot change otherwise we would have a fault and it would contradict the initial assumption where y is dangling

In-place Reasoning

```
{(x|-> - ) * P} [x]:=7 {(x |->7)*P}

{true} [x]:=7 {???}

{(x|-> -) * P} dispose(x) {P}

{true} dispose(x) {???}
```

```
\{P\} x:=new() \{(x|->-) * P\} (x not in Free(P))
```

```
x = new(3,3);
```

$$y = new(4,4);$$

$$[x+1] = y;$$

$$[y+1] = x;$$

We discuss this more tomorrow

```
{exists n,m. x=n / y=m / emp}
    x = new(3,3);
    y = new(4,4);
                         We discuss this
                          more tomorrow
    [x+1] = y;
    [y+1] = x;
    dispose x;
```

```
{exists n,m. x=n / y=m / emp}
     x = new(3,3);
    \{x | -> 3, 3\}
y = new(4,4);
                             We discuss this
                             more tomorrow
     [x+1] = y;
     [y+1] = x;
     dispose x;
```

```
{exists n,m. x=n / y=m / emp}
     x = new(3,3);
    \{x | -> 3, 3\}
y = new(4,4);
                             We discuss this
  \{x|->3,3* y|->4,4\}
                             more tomorrow
     [x+1] = y;
     [y+1] = x;
     dispose x;
```

```
{exists n,m. x=n / y=m / emp}
    x = new(3,3);
    \{x|->3,3\}
    y = new(4,4);
                           We discuss this
 \{x|->3,3* y|->4,4\}
                           more tomorrow
    [x+1] = y;
  \{x|->3,y^* y|->4,4\}
     [y+1] = x;
    dispose x;
```

```
{exists n,m. x=n / y=m / emp}
     x = new(3,3);
    \{x \mid ->3,3\}
     y = new(4,4);
  \{x|->3,3* y|->4,4\}
     [x+1] = y;
  \{x|->3,y^* y|->4,4\}
     [y+1] = x;
  \{x|->3,y^* y|->4,x\}
     dispose x;
```

We discuss this more tomorrow

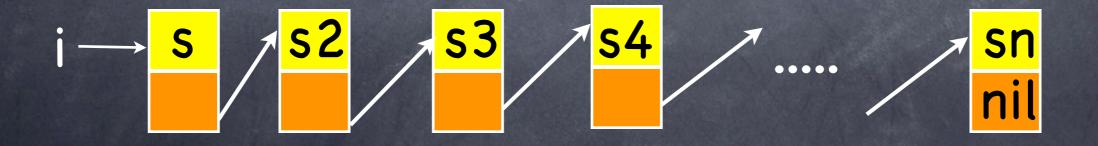
```
{exists n,m. x=n / y=m / emp}
     x = new(3,3);
    \{x \mid ->3,3\}
     y = new(4,4);
  \{x|->3,3* y|->4,4\}
     [x+1] = y;
  \{x|->3,y^* y|->4,4\}
     [y+1] = x;
  \{x|->3,y^* y|->4,x\}
     dispose x;
  \{x+1|->y^* y|->4,x\}
```

We discuss this more tomorrow

Lists

A non circular list can be defined with the following inductive predicate:

```
list [] | = emp /\ i=nil
list (s::5) | = exists j. i|->s,j * list S j
```



```
j:=[i+1];
dispose(i)
dispose(i+1)
i:=j;
```

```
{list (a::S) i}
```

```
j:=[i+1];
```

dispose(i)

dispose(i+1)

```
{list (a::S) i}
{exists j. i |->a,j| * list S j}
j:=[i+1];
dispose(i)
dispose(i+1)
i:=j;
```

```
{list (a::S) i}
{exists j. i |->a,j * list S j}
{ i|->a * exists j. i+1 |->j * list S j}
j:=[i+1];
dispose(i)
dispose(i+1)
i:=j;
```

```
{list (a::S) i}
{exists j. i |->a,j * list S j}
{ i|->a * exists j. i+1 |->j * list 5 j}
j:=[i+1];
{ i|->a * i+1 |->j * list S j}
dispose(i)
dispose(i+1)
i:=j;
```

```
{list (a::S) i}
{exists j. i |->a,j * list S j}
{ i|->a * exists j. i+1 |->j * list 5 j}
j:=[i+1];
{ i|->a * i+1 |->j * list S j}
dispose(i)
{ i+1 |->j * list S j}
dispose(i+1)
i:=j;
```

```
{list (a::S) i}
 {exists j. i |->a,j * list S j}
 \{ i \mid ->a * exists j. i+1 \mid ->j * list 5 j \}
j:=[i+1];
{ i|->a * i+1 |->j * list S j}
dispose(i)
{ i+1 |->j * list S j}
dispose(i+1)
{ list S j }
i:=j;
```

```
{list (a::S) i}
 {exists j. i |->a,j| * list S j}
 \{i|->a * exists j. i+1 |->j * list 5 j\}
 j:=[i+1];
 { i|->a * i+1 |->j * list S j}
 dispose(i)
 { i+1 |->j * list S j}
 dispose(i+1)
{ list S j }
 i:=j;
{ list S i }
```

Homework

Try to prove this triple (if you cannot do not worry).

```
{list (a::S) x *list(b::S') z }
y:=x;
x := [x+1];
dispose(y);
dispose(y+1);
y=new(5,5);
[y+1]:=x;
{list (5::S) y *list (b::S) z}
```

look at the next slide

Use these rules:

For proving that program it may be easier to use the following rules (instead of small axioms)

```
{P} x:=E {exists x'. x=E[x'/x] /\ P[x'/x]}

{P*E|->F} x:=[E] {exists x'.x=F[x'/x] /\ (P*E|->F)[x'/x] }

{P*E|->F} [E]:=G { P*E|->G }

{P} x:=new(E) {exists x'. P[x'/x] * x |->E[x'/x]}

{P*E|->F} dispose(E) { P}
```

here x' is a fresh variable

References

- H. Yang and P. O'Hearn. A Semantic Basis for Local Reasoning. FOSSACS 2003.
- P. O'Hearn, J. Reynolds, and H. Yang. Local Reasoning about Programs that Alter Data Structures. CSL 2001.