Program Verification
Using Separation Logic

Queen Mary University of London

Lecture 2

Today's plan

@ Programming language & semantics
@ Small axioms
@ Frame Rule

@ Tight interpretfation of triples

Simple Imperative Language

@ Safe commands:
o
@ Heap accessing commands:
o
where E Is and expression X, Y, nil, etc.
@ Command:

D

where B boolean guard E=E, E!=E, efc.

Semantics of Programs

@ The concrete semantics of the language is
given by a operational semantics:

@ (s,h),C ===>(s",h),C’
@ (s,h),C ===>(s",h’)
@ (s,h),C ===>

o IS a special error state indicating a
memory violation

Concrete semantics

C|E]s=n ¢ & dom(h)
s,h, r .= F = (s|ltr—mn),h s, h, new(x) = (s|z — £), (h|f — n)

C|E|s=4¥¢ h(f)=mn C|E|s =1/
s,h, x :=|F] = (s|r+—mn),h s,h* [{ — n], dispose(F) = s, h

C|E|s=4¥¢ C|F]s=n ¥{¢&dom(h) C[E]|s & dom(h)
s,h, |[F] :==F = s, (h|l — n) s,h, A(F) = T

Hoare Logic

@ A Hoare triple is a formula where

@ P, Q are formulae in a base logic (e.g. first
order logic, separation logic, etc.)

@ C Is a program in our language
@ P is called

@ Q is called

Semantics of Hoare triples

@ is valid iff
starting from a state s,h |= P, whenever the
execution of C terminates in a state (s’,h’)

then s’ h'l= Q

o s valid iff
starting from a state s,hl= P,

@ Every execution terminates

® when an execution tferminates in a state
(s’,h’) then s’,h'|= Q.

Semantics of Hoare triples

@ Partial correctness: is valid iff
starting from a state s,h |= P, whenever the

execution of C terminates in a state (s’,h’)
then s’ ,h'l= Q

® Total correctness: is valid iff
starting from a state s,h|= P,

@ Every execution tferminates

® when an execution tferminates in a state
(s’,h’) then s’,h'|= Q.

Sequential Composition Rule

Cl C2
Cl;C2

Example:

Sequential Composition Rule

Cl C2
Cl;C2

Example:

1 y+2>4 } yi=y+2z-1; x:=y+2 { x>5 }

Sequential Composition Rule

Cl C2
Cl;C2

Example:

§ V+Z>4 } V:=y+z-1 {y > 3}
1 y+2>4 } yi=y+2z-1; x:=y+2 { x>5 }

Sequential Composition Rule

Cl C2
Cl;C2

Example:

1 Y+2>4 § yi=y+z-l1 1y > 3} i y>3 t xi=y+2 {x > 5}
1 y+2>4 } yi=y+2z-1; x:=y+2 { x>5 }

Conditional rules

Cl C2

if B then Cl else C2

Example:

Conditional rules

Cl c2
if B then Cl else C2

Example:

{ (y>4) } if z>1 then y:=y+z else y:=y-1 { y>3 }

Conditional rules

Cl c2
if B then Cl else C2

Example:

£ (y>4) /\ (2>1) } yvi=y+z { y>5 }

{ (y>4) } if z>1 then y:=y+z else y:=y-1 { y>3 }

Conditional rules

Cl c2
if B then Cl else C2

Example:

§(y>4) /\ (2>1) } yizy+z 1 ¥>5 3§ (v>5) /\ A(z>1)} yvi=y-1 { y>3 }

{ (y>4) } if z>1 then y:=y+z else y:=y-1 { y>3 }

Structural Rules

P==>P' . B PC{Q} STEE
P} Cc {Q}

consequence

{P1} C {Q1} P2} C {Q2}
P1 \/ P2} C {Ql \/ Q2}

disjunction

there are other rules, eg conjuction, quantifiers

Example:

Structural Rules

P==>P' . B PC{Q} STEE
P} Cc {Q}

consequence

{P1} C {Q1} P2} C {Q2}
P1 \/ P2} C {Ql \/ Q2}

disjunction

there are other rules, eg conjuction, quantifiers

Example:

{(y>4) /\ (2>1) } yi=v+z { y>3 }

Structural Rules

P==>P' . B PC{Q} STEE
P} Cc {Q}

consequence

{P1} C {Q1} P2} C {Q2}
P1 \/ P2} C {Ql \/ Q2}

disjunction

there are other rules, eg conjuction, quantifiers

Example:
{ y+2>5 } y:=y+z {y > 5}

{(y>4) /\ (2>1) } yi=v+z { y>3 }

Structural Rules

P==>P' . B PC{Q} STEE
P} Cc {Q}

consequence

{P1} C {Q1} P2} C {Q2}
P1 \/ P2} C {Ql \/ Q2}

disjunction

there are other rules, eg conjuction, quantifiers

Example:
{ y+2>5 } y:=y+z {y > 5}

{(y>4) /\ (2>1) } yi=v+z { y>3 }

Structural Rules

P==>P' . B PC{Q} STEE
P} Cc {Q}

consequence

{P1} C {Q1} P2} C {Q2}
P1 \/ P2} C {Ql \/ Q2}

disjunction

there are other rules, eg conjuction, quantifiers

Example:
{ y+2>5 } y:=y+z {y > 5}

{(y>4) /\ (2>1) } yi=v+z { y>3 }

Small Axioms

® i =

@ [E]:=F

3 X:=[E]

. dispose(E)

3 x:=new(El,...,EK)

where x,m,n are assumed to be distinct variables

These axioms mention only the local state
which is touched, called

Observation

@ A Hoare ftriple describes the effect an
action has on the portion of program store it
explicitly mentions.

o It what cells among those not
mentioned remain unchanged.

Observation

@ A Hoare ftriple describes the effect an
action has on the portion of program store it
explicitly mentions.

o It what cells among those not
mentioned remain unchanged.

We want instead to say:

Idea: focus on footprint

@ Change the interpretation of the Hoare triple
{P} C {Q}, so that C must only dereference
cells guaranteed to exists by P or allocated
by C itself

@ Add an inference rule to obtain bigger
specifications from small ones.

Idea: focus on footprint

The portion of memory

touched by a command

@ Change the interpretation of the Hoare friple
{P} C {Q}, so that C must only dereference
cells guaranteed to exists by P or allocated
by C itself

@ Add an inference rule to obtain bigger
specifications from small ones.

Memory faults

@ Some commands can for example:
o or or

@ Examples:

Memory faults

@ Some commands can for example:
o or or

@ Examples:

Tight Interpretation of Triples

@ The interpretation of the triples in
separation logic ensures that a program
does not fault!

{P}C{Q} holds iff Vs, h. if s,h = P then
-(C, s, h —* err

and, if C,s,h —* s',h/ then s’ h' = Q

This ensure that a well-specified programs access only
the cells guaranteed fo exist in The precondition or
created by C

Aliasing and Soundness

@ In traditional Floyd-Hoare logic, the rule
of

allows modular reasoning for sequential as well as
parallel programs.

Aliasing and Soundness

@ In traditional Floyd-Hoare logic, the rule
of

allows modular reasoning for sequential as well as
parallel programs.

This rule is in presence of pointers

Aliasing and Soundness

@ In traditional Floyd-Hoare logic, the rule
of

allows modular reasoning for sequential as well as
parallel programs.

This rule is in presence of pointers

{ [x]=3 } [x):=7 { [X]=7 }
{ [x]=3 /\ [y=3] } [x):=7 { [x]=7 /\ [yl=3}

Frame Rule

ERSAC Modifies(C) NFV(R) = ()

{Px R}C{Q *x R}

R is the frame (it can be added as invariant)

* and err-avoiding triple take care of the heap access
of C

The side condition takes care of the stack access

Note:

Example using the
Frame Rule

ix|->-} [x]:=z {x|->z}

iyl->c * x|->-} [x]:=3 {x|->z * yl->c}

Example

Lets assume:

and C modifies only the heap.

Example

Lets assume:

and C modifies only the heap.
If we give C more heap

Example

Lets assume:

and C modifies only the heap.
If we give C more heap

Example

Lets assume:

and C modifies only the heap.
If we give C more heap

We are sure that cell otherwise
we would have a fault and it would contradict the
initial assumption where vy is dangling

In-place Reasoning

{(xlI-> -) * P} [x]:=7 {(x |->7)*P}
$true} [x]:=7 §277

{(xI-> =) * P} dispose(x) {P}
{true} dispose(x) 1777}

P} x:=new() {(x|-> -) * P}

Proving a program

X = new(3,3);
vy = new(4,4);
[x+1] = v;
[y+1] = x;

dispose X;

Proving a program

X = new(3,3);
vy = new(4,4);
[x+1] = v;
[y+1] = x;

dispose X;

Proving a program

X = new(3,3);
vy = new(4,4);
[x+1] = v;
[y+1] = x;

dispose X;

Proving a program

X = new(3,3);
vy = new(4,4);
[x+1] = v;
[y+1] = x;

dispose X;

Proving a program

X = new(3,3);
vy = new(4,4);
[x+1] = v;
[y+1] = x;

dispose X;

Proving a program

X = new(3,3);
vy = new(4,4);
[x+1] = v;
[y+1] = x;

dispose X;

Proving a program

X = new(3,3);
vy = new(4,4);
[x+1] = v;
[y+1] = x;

dispose X;

Lists

A non circular list can be defined with
the following inductive predicate:

= emp /\ i=nil
= exists j. il->s,j * list S j

Homework

Try to prove this triple (if you cannot do not worry).

Vi=X;
X:=[x+1];
dispose(y);
dispose(y+1);
y=new(5,5);
[y+1]):=x;

look at the next slide

Use these rules:

For proving that program it may be easier
to use the following rules (instead of small
axioms)

{P} x:=E {exists x'. x=E[x'/x] /\ P[x'/x]}
{P*E|->F} x:=[E] {exists x’.x=F[x'/x] /\ (P*El->F)[x'/x] }

{P*E|->F} [E):=G { P*E|->G }
{P} x:=new(E) {exists x’. P[x'/x] * x |->E[x'/x]}

{P*E|->F} dispose(E) { P}

here X' is a fresh variable

References

@ H. Yang and P. O'Hearn.
FOSSACS 2003.

@ P. O'Hearn, J. Reynolds, and H. Yang.

CSL 2001.

